COUPLINGS

MIKI PULLEY

CONTENTS

COUPLINGS

ETP BUSHINGS

ELECTROMAGNETIC CLUTCHES & BRAKES SPEED CHANGERS & REDUCERS

INVERTERS

LINEAR SHAFT DRIVES

ORQUE LIMITER

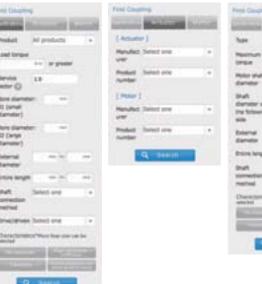
ROSTA

			0
>> 020	COUPLINGS	≫ 112	PARAFLEX
022	Coupling Models	113	CPE
024	Selection Guide	114	CPU
025	Select by Product Characteristics		
025	Select by Drive	>> 116	SCHMIDT
026	Applications	117	NSS
		122	DL
>> 028	SERVOFLEX		SP CPU
030	Product Lineup	>> 124	STEPFLEX
034	SFC	126	STF
046	SFS	N 120	MIKI PULLEY STARFLEX
060	SFF		
074	SFM	134	ALS(R)
082	SFH	136	ALS(Y)
090	Torque Wrenches	138	ALS(B)
		≫ 146	SPRFLEX
≫ 092	SERVORIGID		
093	SRG	147	AL
N 00/		≫ 150	BELLOWFLEX
>> 096	HELI-CAL		
098	1441/HELI-CAL MINI	151	СНР
099	3002/3005	>> 152	CENTAFLEX
100	ARM/ACRM	154	
101	DSR/DSCR	154	Product Lineup CF-A
N 10/	BAUMANNFLEX	172	CF-H
≫ 104		172	CF-X
106	ZG	178	CF-B
107	LM	186	СМ
108	MM	100	
109	MF	≫ 606	MIKI PULLEY Hole-Drilling Standards

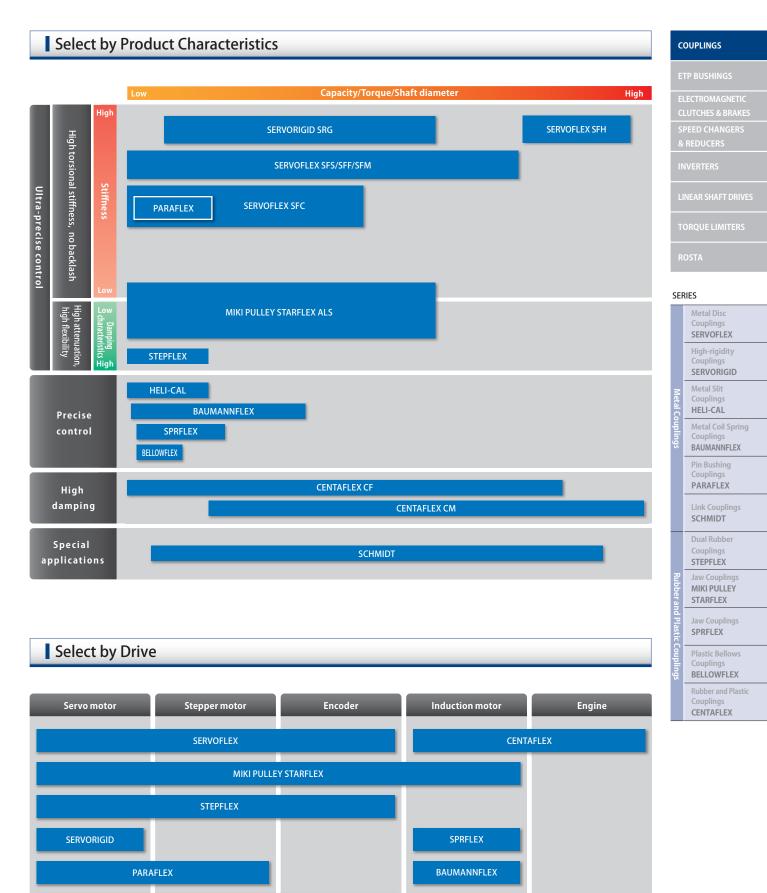
0

Coupling Models

SERIES	STEPFLEX	MIKI PULLEY STARFLEX		
	STF	ALS(R) Key or Set Screw	ALS(Y) Key or Set Screw	ALS(B) Key or Set Screw
I	> P.126	» P.134	P.136	» P.138
MODELS		ALS(R) Clamp	ALS(Y) Clamp	ALS(B) Clamp
		» P.135	» P.137	> P.139

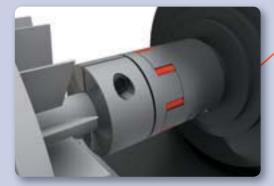

Selection Guide

1 Select a type	Refer to the list of parts (p. 022), Select by Product Characteristics (p. 025), Select by Driver (p. 025), and Applications (p. 026) sections in order to select the best coupling for the application at hand.
2 Select a size	Select a size with a nominal torque (for SERVOFLEX, a rated torque) higher than the load torque. Make sure to also consider load conditions when making a selection.
3 Check the max. bore diameter	When selecting a model, make sure to check that the mounting shaft diameter is smaller than the maximum bore diameter of the coupling.
4 Overview	Once the model has been selected, check the rated torque, maximum rotation speed, dimensions, and other specifications again to confirm that they satisfy the usage conditions.


Quick Search

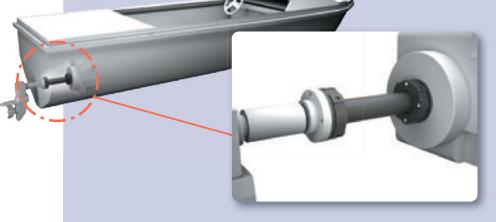
You can use the website quick search feature to narrow down your search for couplings.

Peril Gauges	4	
Concession of the	Summer of	and the state
here	Anisot unw	
There are a constant		**
Hoter shaft diameter		-
Shaft Consider on The Schoorts		-
External clamator		-
thire legal		
inst meter	Select one	14
Daration		-
		-
-) - s	L Seath.	1



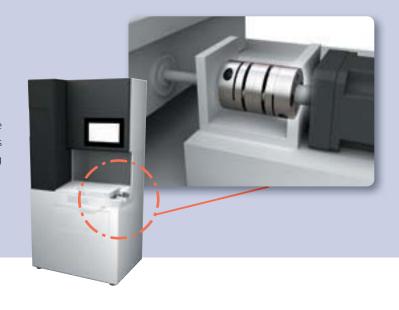
HELI-CAL

BELLOWFLEX


Applications

MIKI PULLEY STARFLEX coupling for connecting the drive unit. Simple structure and easy maintenance.

Product modelCF-A(OZ)Employed devicePleasure Boat


CENTAFLEX coupling and floating shaft (for high-speed rotation) are used to connect the engine and the propeller.

Product model SFC

of semiconductor wafers.

Employed device Dicing Saw

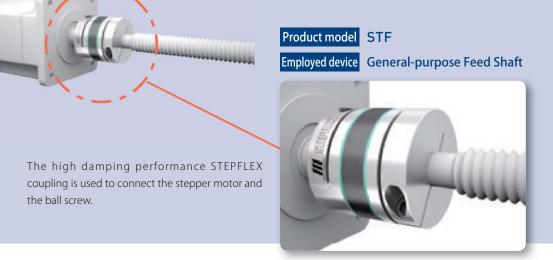
SERVOFLEX for connecting the servo motor and ball screw. It is used for ultra-precision machining

COUPLINGS


ETP BUSHINGS ELECTROMAGNETIC CLUTCHES & BRAKES SPEED CHANGERS & REDUCERS INVERTERS LINEAR SHAFT DRIVES TORQUE LIMITERS ROSTA SERIES Metal Disc Combines

	Couplings SERVOFLEX
	High-rigidity Couplings SERVORIGID
Motal	Metal Slit Couplings HELI-CAL
nininaa	Metal Coil Spring Couplings BAUMANNFLEX
	Pin Bushing Couplings PARAFLEX
	Link Couplings SCHMIDT
	Dual Rubber Couplings STEPFLEX
Dishhora	Jaw Couplings MIKI PULLEY STARFLEX
nd Disctic (Jaw Couplings SPRFLEX
"ounling:	Plastic Bellows Couplings BELLOWFLEX
	Rubber and Plastic

CENTAFLEX


Product model SFF

Employed device CNC Lathe

Ultra-high stiffness coupling SFF model for connecting the servo motor and feed shaft. The rated torque is higher than the conventional models, and the coupling size and the moment of inertia can be reduced.

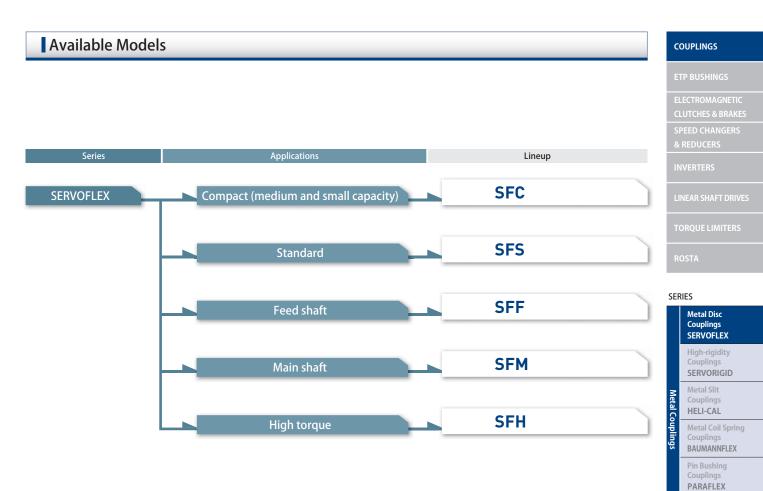
Metal Disc Couplings **SERVOFLEX**

Max. rated torque [N·m]	8000
Bore ranges [mm]	ϕ 3 \sim 115
Operating temperature [℃]	$-30 \sim 120(100)$
Drive	Servomotor/stepper motor
Applications	Machine tool / semiconductor manufacturing equipment / printing press / packing machine
•	

High-stiffness and Low-inertia Servomotor Couplings

Metal disc couplings developed for high-speed and high-precision positioning and ultra-precise control of servomotors, etc. While achieving high stiffness, high torque, low inertia, and high response speed, these couplings are also flexible in the torsional direction, in the uneven directions, and in the shaft direction, and are totally free from backlash. Models with various characteristics are available, and each model has a single element type that emphasizes stiffness and a double element type that emphasizes flexibility.

Link Couplings


Dual Rubber Couplings STEPFLEX Jaw Couplings MIKI PULLEY STARFLEX

Jaw Couplings SPRFLEX

Plastic Bellows Couplings BELLOWFLEX Rubber and Plastic Couplings CENTAFLEX

r and Plastic Coup

MODELS SFC SFS SFF SFM SFH

Model Selection

Model type	e Rated torque [N · m]				High stiffness	Low inertia	Mountability	Mounting accuracy	High-speed rotation	Material	Operating temperature [°C]		
	0.1	1	10	100	1000	10000							
SFC		C).25 ~ 250				\bigcirc	•	•	\bigcirc	Ô	Aluminum alloy	-30 ~ 100
SFS				20 ~ 800			O	Ô	\bigtriangleup	\bigcirc	\bigcirc	Steel	-30 ~ 120
SFF				8 ~ 1000			•	•	O	•	Ô	Steel	-30 ~ 120
SFM				60 ~ 10	00		•	Ô	Ô	•	•	Steel	-30 ~ 120
SFH					1000	~ 8000	•	O	\bigtriangleup	\bigcirc	0	Steel	-30 ~ 120

* Symbols in the table indicate four levels of adaptability in order of $\otimes \bigcirc \bigcirc \land$ with \otimes showing the highest level of adaptability and \triangle showing the lowest level. (Adaptability high $\leftarrow \oplus \bigcirc \bigcirc \land \rightarrow$ low)

Product Lineup

 $SFS(S) \square M - \square M$

Applications: Machine tool, printing press, packing machine, coater/ Max. rated torgue coating machine Bore ranges

Parts Delivery

Wide Variations

SERVOFLEX standard model. 18 types with different numbers of elements, distances between shafts, shaft connection methods, etc. are available. You can select the electroless nickel plating for the pilot bore and key/set screw.

SFS(S)

SFS(S-C)

urface finishing: Black coating applied Element material: SUS304 metal disc Collar: S45C or an equivalent

Flange material: S45C heat-treated naterial or an equivalent Surface finishing: Black coating applied

Reamer bolt material: Alloy steel for machine structural use Surface finishing: Black coating applied

Set screw with hexagonal hole material: SUS304 or an equivalent Element material: SUS304 metal disc

Collar: S45C or an equivalent

plating treatment

Reamer bolt material: Alloy steel for machine structural use

Surface finishing: Electroless nickel plating treatment

Surface finishing: Electroless nickel plating

Flange material: S45C heat-treated

material or an equivalent Surface finishing: Electroless nickel

Reamer bolt material: Alloy steel for machine structural use Surface finishing: Black coating applied Flange material: S45C heat-treated material or an equivale Surface finishing: Black coating applied Element material: SUS304 metal disc

Collar: S45C or an equivalent Collar material: S45C or an equivalent

Surface finishing: Black coating applied Sleeve material: S45C heat-treated material or an equivalent Surface finishing: Black coating applied

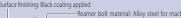
bolt material: Alloy steel for machine structural use finishing: Black coating applied

SFS(W)

Spacer material: SS400 or an equivalen Surface finishing: Black coating applied

Collar: S45C or an equivale Flange material: \$45C heat-treated

material or an equivalent Surface finishing: Black coating applied


mer bolt material: Alloy steel for machine structural use Surface finishing: Black coating applied

coupling could not be mounted. You can also order an assembled coupling to be delivered or combine different types of hubs. SFS(S) MC

You can order the parts of the coupling to be delivered instead of an assembled

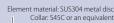
coupling, so you can use this coupling in a design in which the assembled

bolt material: Alloy steel for machine structural use

-Reamer bolt material: Alloy steel for machine structural use Surface finishing: Black coating applied Flange material: S45C heat-treated mat Surface finishing: Black coating applied rial or an equivalent

[N·m]

[mm]


800 $\phi 8 \sim 60$

Element material: SUS304 metal disc Collar: S45C or an equivalent erial: S45C or an equivalent Surface finishing: Black coating applied

Sleeve material: S45C heat-treated material or an equivalent Surface finishing: Black coating applied

Collar m

SFS(G)

Flange material: S45C heat-treated material or an equivalent Surface finishing: Black coating applied

Spacer material: Carbon steel Surface finishing: Black coating or painting

amer bolt material: Alloy steel for machine structural use Surface finishing: Black coating applied

Customization Cases

SFC Model simple antirust

The all-stainless-steel construction provides even better rust-proofing.

SFC Model with long spacer

SFC Model with slit plate

A slit plate is mounted between the hubs to allow it to be used with position detection sensors such as an encoder and photo sensor.

This is a specification for when the mounting distance between shafts is long. It can be used in applications such as synchronization of gantry mechanism.

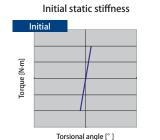
SFF Model For non-excitation brake assemblies

The device design can be made more compact by forming the spline to the outer diameter of the SFF model and using it as the rotor hub for a Miki Pulley non-excitation brake.

For details, please visit our website.

For inquiries on customization

www.mikipulley.co.jp

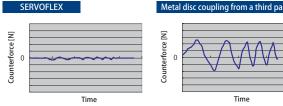

COUPLINGS

ETP BUSHINGS

FAQ

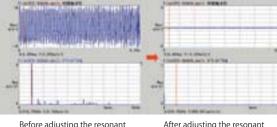
Q1 What are the durability and aging deterioration of the SERVOFLEX?

A We conduct a torsional durability test by applying a load larger than the rated torque. SERVOFLEX passed the test by withstanding the metal fatigue limit of 10 million cycles of repeated load. SERVOFLEX is all made of metal materials so the deterioration is extremely slow, and it is able to transmit torque with high precision for a long period of time.


Static stiffness after the durability test After 10 million cycles Torque [N·m]

Torsional angle

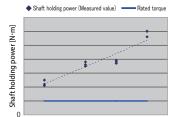
Torsional characteristics of the SERVOFLEX before and after the dural with 10 million cycles of repeated load


Q2 When a coupling is mounted, the driven shaft runs out. What is the cause?

A The runout of a driven shaft caused by a coupling is mainly attributed to the counterforce of the shaft caused by insufficient centering. All of the SERVOFLEX series are assembled using high-precision special jigs to ensure high concentricity of the bores on the left and right. The counterforce of the shaft is extremely small so the runout of the driven shaft can be minimized.

Noise and vibrations occurred during use of a metal disc coupling. Please tell me how to 03 prevent them.

A For a servo motor, noise and vibrations can be suppressed by setting the machine resonance suppression filter to its natural frequency in the control system. For a stepper motor, vibrations can be absorbed and suppressed by changing the rotation speed or using a STEPFLEX coupling with high damping ability.


filter of the servo motor

After adjusting the resonant filter of the servo motor

MODELS

QL Can enough torgue be transmitted using the clamping method for connection to the shaft?

Our torque transmission test uses a sufficient safety factor, so slip of the connection caused by the connection method will not occur when using the rated torque in the catalog. A keyway can be milled into the clamping hub. If you are interested, please refer to P.041 Keyway Milling Option.

Bore diameter [mm]

Shaft holding power based on SFC-040DA2 bore diameter

	Т	
[°]	R	OSTA
bility test		
	SEF	RIES
		Metal Disc Couplings SERVOFLEX
		High-rigidity Couplings SERVORIGID
ird party	Metal Co	Metal Slit Couplings HELI-CAL
\mathbf{A}	Netal Couplings	Metal Coil Sprin Couplings BAUMANNFLEX
		Pin Bushing Couplings

PARAFLEX

SCHMIDT

Dual Rubber
Couplings
STEPFLEX
Jaw Couplings MIKI PULLEY STARFLEX
Jaw Couplings SPRFLEX

Plastic Bellows BELLOWFLEX

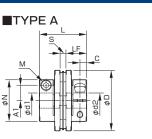
CENTAFLEX

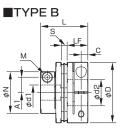
SFC											
SFS											
SFF											
SFM	 	 									
SFH	 	 								•	

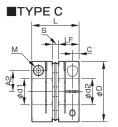
SFC(SA2) Types Single Element Type

Specifications

		Rated		Misalignment		Max. rotation	Torsional	Axial	Moment	
Model	Туре	torque [N•m]	Parallel [mm]	Angular [°]	Axial [mm]	speed [min ⁻¹]	stiffness [N∙m/rad]	stiffness [N/mm]	of inertia [kg•m²]	Mass [kg]
SFC-002SA2	С	0.25	0.01	0.5	± 0.04	10000	190	34	0.06×10^{-6}	0.003
SFC-005SA2	С	0.6	0.02	0.5	± 0.05	10000	500	140	0.26 × 10 ⁻⁶	0.007
SFC-010SA2	С	1	0.02	1	± 0.1	10000	1400	140	0.58×10^{-6}	0.011
SFC-020SA2	С	2	0.02	1	± 0.15	10000	3700	64	2.39×10^{-6}	0.025
SFC-025SA2	С	4	0.02	1	± 0.19	10000	5600	60	3.67 × 10 ⁻⁶	0.029
	А	5	0.02	1	± 0.2	10000	8000	64	4.07 × 10 ⁻⁶	0.034
SFC-030SA2	В	5	0.02	1	± 0.2	10000	8000	64	6.09 × 10 ⁻⁶	0.041
	С	5	0.02	1	± 0.2	10000	8000	64	8.20 × 10 ⁻⁶	0.049
SFC-035SA2	С	10	0.02	1	± 0.25	10000	18000	112	18.44×10^{-6}	0.082
	А	12	0.02	1	± 0.3	10000	20000	80	16.71 × 10 ⁻⁶	0.077
SFC-040SA2	В	12	0.02	1	± 0.3	10000	20000	80	22.55×10^{-6}	0.085
	С	12	0.02	1	± 0.3	10000	20000	80	29.25×10^{-6}	0.100
	А	25	0.02	1	± 0.4	10000	32000	48	55.71 × 10 ⁻⁶	0.159
SFC-050SA2	В	25	0.02	1	± 0.4	10000	32000	48	76.26 × 10 ⁻⁶	0.177
	С	25	0.02	1	± 0.4	10000	32000	48	99.03×10^{-6}	0.206
SFC-055SA2	С	40	0.02	1	± 0.42	10000	50000	43	188.0×10^{-6}	0.314
	Α	60	0.02	1	± 0.45	10000	70000	76.4	145.9×10^{-6}	0.283
SFC-060SA2	В	60	0.02	1	± 0.45	10000	70000	76.4	205.0×10^{-6}	0.326
	С	60	0.02	1	± 0.45	10000	70000	76.4	268.6×10^{-6}	0.385
SFC-080SA2	С	100	0.02	1	± 0.55	10000	140000	128	710.6 × 10 ⁻⁶	0.708
SFC-090SA2	С	180	0.02	1	± 0.65	10000	100000	108	1236×10^{-6}	0.946
SFC-100SA2	С	250	0.02	1	± 0.74	10000	120000	111	1891 × 10 ⁻⁶	1.202


ally sj ki Pulley a by I * Check the Standard Bore Diameter list as rated torque may be restricted by the holding power of the shaft connection component.


* Max. rotation speed does not take into account dynamic balance.


* Torsional stiffness values given are measured values for the element alone.

* The moment of inertia and mass are measured for the maximum bore diameter.

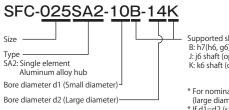
Dimensions

CAD

Madal	T	d1 [mm]		d2 [mm]		D DB		Ν	L	LF	S	A1	A2	с	К	м	Tightening torque	
Model	Туре	Min. Max.		Min.	Min. Max.		[mm]	[mm]	[mm]	[mm]	mm] [mm]		[mm]	[mm]	[mm]	Qty - Nominal dia.	[N•m]	
SFC-002SA2	С	3	5	3	5	12	12.4	-	12.35	5.9	0.55	_	3.7	1.9	5.6	1-M1.6	$0.23 \sim 0.28$	
SFC-005SA2	С	3	6	3	6	16	—	—	16.7	7.85	1	—	4.8	2.5	6.5	1-M2	$0.4 \sim 0.5$	
SFC-010SA2	С	3	8	3	8	19	_	—	19.35	9.15	1.05	_	5.8(6)	3.15	8.5	1-M2.5(M2)	1.0~1.1(0.4~0.5)	
SFC-020SA2	С	4	10	4	11	26	_	_	23.15	10.75	1.65	—	9.5	3.3	10.6	1-M2.5	1.0 ~ 1.1	
SFC-025SA2	С	5	14	5	14	29	—	-	23.4	10.75	1.9	_	11	3.3	14.5	1-M2.5	$1.0 \sim 1.1$	
	Α	5	10	5	10	34	—	21.6	27.3	12.4	2.5	8	—	3.75	14.5	1-M3	$1.5 \sim 1.9$	
SFC-030SA2	В	5	10	Over 10	16	34	_	21.6	27.3	12.4	2.5	8	12.5	3.75	14.5	1-M3	1.5 ~ 1.9	
	С	Over 10	14	Over 10	16	34	_	_	27.3	12.4	2.5	—	12.5	3.75	14.5	1-M3	1.5 ~ 1.9	
SFC-035SA2	с	6	16	6	19	39	_	_	34	15.5	3	_	14	4.5	17	1-M4	3.4 ~ 4.1	
	А	8	15	8	15	44	_	29.6	34	15.5	3	11	_	4.5	19.5	1-M4	3.4 ~ 4.1	
SFC-040SA2	В	8	15	Over 15	24	44	—	29.6	34	15.5	3	11	17	4.5	19.5	1-M4	3.4 ~ 4.1	
	С	Over 15	19	Over 15	24	44	_	_	34	15.5	3	_	17	4.5	19.5	1-M4	3.4 ~ 4.1	
	А	8	19	8	19	56	-	38	43.4	20.5	2.4	14.5	-	6	26	1-M5	$7.0 \sim 8.5$	
SFC-050SA2	В	8	19	Over 19	30	56	_	38	43.4	20.5	2.4	14.5	22	6	26	1-M5	7.0 ~ 8.5	
	С	Over 19	25	Over 19	30	56	_	_	43.4	20.5	2.4	_	22	6	26	1-M5	7.0 ~ 8.5	
SFC-055SA2	С	10	30	10	30	63	—	—	50.6	24	2.6	—	23	7.75	31	1-M6	$14 \sim 15$	
	А	11	24	11	24	68	-	46	53.6	25.2	3.2	17.5	-	7.75	31	1-M6	14~15	
SFC-060SA2	В	11	24	Over 24	35	68	_	46	53.6	25.2	3.2	17.5	26.5	7.75	31	1-M6	14~15	
	С	Over 24	30	Over 24	35	68	_	_	53.6	25.2	3.2	_	26.5	7.75	31	1-M6	$14 \sim 15$	
SFC-080SA2	С	18	35	18	40	82	—	—	68	30	8	_	28	9	38	1-M8	$27 \sim 30$	
SFC-090SA2	с	25	40	25	45	94	_	_	68.3	30	8.3	_	34	9	42	1-M8	27~30	
SFC-100SA2	С	32	45	32	45	104	—	_	69.8	30	9.8	—	39	9	48	1-M8	27 ~ 30	

* Types A / B / C are automatically specified by Miki Pulley according to the combination of bore diameters you select, and cannot be specified by the customer.

* The øDB value is measured assuming that the head of the clamping bolt is larger than the external diameter of the hub. * The K dimension is the inner diameter of the element. For d2 dimension exceeding this value, shaft can be inserted only up to LF dimension to the d2 side hub.


* The nominal diameter for the clamping bolt M is equal to the quantity minus the nominal diameter of the screw threads, where the quantity is for a hub on one side. * The figures in parentheses () for the SFC-010 are the values when d1 or d2 is ø8 mm.

Standard Bore Diameter

							andaı																									
inal bore diamet		3	4	5	6	6 .35	7	8	9	9.525	10	11	12	13	14	15	16	17	18	19	20	22	24	25	28	30	32	35	38	40	42	45
h7 (h6 • g6)	В		٠																													•
j6 (Option)	J																			0		\bigcirc	0		\bigcirc							
k6(Option)	K							0	0						0		0			0		0	0				0		0			
SFC-002SA2	d1		۲	۲																												
510 002542	d2		۲																													
SFC-005SA2	d1		۲																													
SI O OUDSAL	d2		٠																													
SFC-010SA2	d1		۲	۲	•		•	۲																								
STO CROSAL	d2		٠		•		•																									
SFC-020SA2	d1		٠		•																											
51 0 0205AL	d2		٠																													
SFC-025SA2	d1			2.1	•	•	•	•	٠	٠	•		•	٠	•																	
0.0000000	d2			2.1	•	•	•	•	•	•	•	•	•	•	•																	
SFC-030SA2	d1			2.8			•					•		•	•																	
	d2			2.8	3.4																											
SFC-035SA2	d1				5	5	6.6	•	•	•	•	•	•	•	•	•	•	_	-	_												
	d2				5	5	6.6	•	•	•	•	•	•	•	•	•	•	•	•	•												
SFC-040SA2	d1							9	•	•	•	•	•	•	•	•	•	•	•	•												
	d2							9	•	•	•				•	•	•	•		•	•											
SFC-050SA2	d1							18	20	22	22	•	•	•	•	•	•	•	•	•	•	•	•	•	_	_						
	d2							18	20	22	22	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•						
SFC-055SA2	d1										31	34	36	38	•	•	•	•	•	•	•	•	•	•	•	•						
	d2										31	34	36	38		•	•	•	•	•	•	•		•		•						
SFC-060SA2	d1											50	51															-				
	d2											50	51	•	•	•	•	•														
SFC-080SA2	d1																			•		•			•		•	•				
	d2																			•			•									
SFC-090SA2	d1																															
	d2																							•	-	•	226	-	-			
SFC-100SA2	d1																										226			-		
	d2																										226					

 * The shaft tolerance for standard bore diameter is h7 (h6 or g6): designation B. However, for a bore diameter of ø35, the shaft tolerance is ^{+0.010}/_{0.025}.
 * Shaft tolerances j6/k6: designations J/K are optional, and are only supported for bore diameters marked with ○.
 * Bore diameters marked with ● or numbers are supported as the standard bore diameters. Consult Miki Pulley regarding special arrangements which may be possible for other bore diameters.
 * Bore diameters whose fields contain numbers are restricted in their rated torque by the holding power of the shaft connection component because the bore diameter is small. The numbers indicate the rated torque [N•m].

Supported shaft tolerance B: h7(h6, g6) shaft J: j6 shaft (option) K: k6 shaft (option)

* For nominal bore diameter, select d1 (small diameter)-d2 (large diameter) in that order. * If d1=d2 (same diameters), select B, J, and K in that order.

COUPLINGS

CTROMAGNETIC

ES

Eŀ	RIES
	Metal Disc Couplings SERVOFLEX
	High-rigidity Couplings SERVORIGID
Matal Causeline	Metal Slit Couplings HELI-CAL
	Metal Coil Spring Couplings BAUMANNFLEX
	Pin Bushing Couplings PARAFLEX
	Link Couplings SCHMIDT
	Dual Rubber Couplings STEPFLEX
	Jaw Couplings MIKI PULLEY STARFLEX
	Jaw Couplings SPRFLEX
	Plastic Bellows Couplings BELLOWFLEX
	Rubber and Plastic Couplings CENTAFLEX

MODELS

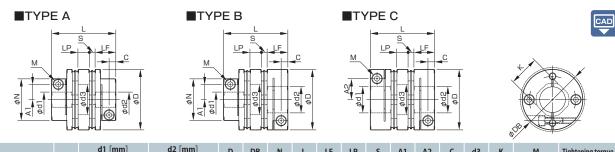
SFC		 		 						
SFS										
SFF										
SFM	 	 	•••	 	 	•••		•	•	•
SFH	 	 		 	 					

A001

SFC(DA2) Types Double Element Type

Specifications

COUPLINGS


		Rated		Misalignment		Max. rotation	Torsional	Axial	Moment	
Model	Туре	torque [N•m]	Parallel [mm]	Angular [°]	Axial [mm]	speed [min ⁻¹]	stiffness [N∙m/rad]	stiffness [N/mm]	of inertia [kg•m²]	Mass [kg]
SFC-002DA2	С	0.25	0.03	0.5(On one side)	± 0.08	10000	95	17	0.07×10^{-6}	0.004
SFC-005DA2	С	0.6	0.05	0.5(On one side)	± 0.1	10000	250	70	0.37×10^{-6}	0.010
SFC-010DA2	С	1	0.11	1(On one side)	± 0.2	10000	700	70	0.80×10^{-6}	0.015
SFC-020DA2	С	2	0.15	1(On one side)	± 0.33	10000	1850	32	3.43×10^{-6}	0.035
SFC-025DA2	С	4	0.16	1(On one side)	± 0.38	10000	2800	30	5.26 × 10 ⁻⁶	0.040
	А	5	0.18	1(On one side)	± 0.4	10000	4000	32	7.43×10^{-6}	0.054
SFC-030DA2	В	5	0.18	1(On one side)	± 0.4	10000	4000	32	9.45×10^{-6}	0.060
	С	5	0.18	1(On one side)	± 0.4	10000	4000	32	11.56×10^{-6}	0.068
SFC-035DA2	С	10	0.24	1(On one side)	± 0.5	10000	9000	56	26.93 × 10 ⁻⁶	0.121
	А	12	0.24	1(On one side)	± 0.6	10000	10000	40	29.98×10^{-6}	0.124
SFC-040DA2	В	12	0.24	1(On one side)	± 0.6	10000	10000	40	35.82×10^{-6}	0.131
	С	12	0.24	1(On one side)	± 0.6	10000	10000	40	42.52×10^{-6}	0.146
	А	25	0.28	1(On one side)	± 0.8	10000	16000	24	98.34 × 10 ⁻⁶	0.250
SFC-050DA2	В	25	0.28	1(On one side)	± 0.8	10000	16000	24	118.9×10^{-6}	0.268
	С	25	0.28	1(On one side)	± 0.8	10000	16000	24	141.7×10^{-6}	0.298
SFC-055DA2	С	40	0.31	1(On one side)	± 0.84	10000	25000	21.5	261.3×10^{-6}	0.459
	А	60	0.34	1(On one side)	± 0.9	10000	35000	38.2	256.6 × 10 ⁻⁶	0.447
SFC-060DA2	В	60	0.34	1(On one side)	± 0.9	10000	35000	38.2	315.7×10^{-6}	0.489
	С	60	0.34	1(On one side)	± 0.9	10000	35000	38.2	379.3×10^{-6}	0.549
SFC-080DA2	С	100	0.52	1(On one side)	± 1.10	10000	70000	64	1039×10^{-6}	1.037
SFC-090DA2	С	180	0.52	1(On one side)	± 1.30	10000	50000	54	1798×10^{-6}	1.369
SFC-100DA2	С	250	0.55	1(On one side)	± 1.48	10000	60000	55.5	2754 × 10 ⁻⁶	1.739

* Check the Standard Bore Diameters as rated torque may be restricted by the holding power of the shaft connection component.

* Max. rotation speed does not take into account dynamic balance. * Torsional stiffness values given are measured values for the element alone.

* The moment of inertia and mass are measured for the maximum bore diameter.

Dimensions

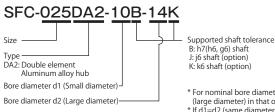
Model	Type	d1 [mr	n]	d2 [mr	n]	D	DB	Ν	L	LF	LP	s	A1	A2	с	d3	к	м	Tightening torque
Model	Type	Min.	Max.	Min.	Max.	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	Qty - Nominal dia.	[N•m]
SFC-002DA2	С	3	5	3	5	12	12.4	—	15.7	5.9	2.8	0.55	_	3.7	1.9	5.2	5.6	1-M1.6	$0.23 \sim 0.28$
SFC-005DA2	С	3	6	3	6	16	—	—	23.2	7.85	5.5	1	—	4.8	2.5	6.5	6.5	1-M2	$0.4 \sim 0.5$
SFC-010DA2	С	3	8	3	8	19	—	—	25.9	9.15	5.5	1.05	—	5.8(6)	3.15	8.5	8.5	1-M2.5(M2)	1.0~1.1(0.4~0.5)
SFC-020DA2	С	4	10	4	11	26	—	—	32.3	10.75	7.5	1.65	—	9.5	3.3	10.6	10.6	1-M2.5	1.0 ~ 1.1
SFC-025DA2	С	5	14	5	14	29	—	—	32.8	10.75	7.5	1.9	_	11	3.3	15	14.5	1-M2.5	$1.0 \sim 1.1$
	Α	5	10	5	10	34	—	21.6	37.8	12.4	8	2.5	8	—	3.75	15	14.5	1-M3	$1.5 \sim 1.9$
SFC-030DA2	В	5	10	Over 10	16	34	—	21.6	37.8	12.4	8	2.5	8	12.5	3.75	15	14.5	1-M3	$1.5 \sim 1.9$
	С	Over 10	14	Over 10	16	34	—	—	37.8	12.4	8	2.5	—	12.5	3.75	15	14.5	1-M3	1.5 ~ 1.9
SFC-035DA2	С	6	16	6	19	39	—	—	48	15.5	11	3	_	14	4.5	17	17	1-M4	3.4 ~ 4.1
	Α	8	15	8	15	44	—	29.6	48	15.5	11	3	11	—	4.5	20	19.5	1-M4	$3.4 \sim 4.1$
SFC-040DA2	В	8	15	Over 15	24	44	—	29.6	48	15.5	11	3	11	17	4.5	20	19.5	1-M4	3.4 ~ 4.1
	С	Over 15	19	Over 15	24	44	—	—	48	15.5	11	3	—	17	4.5	20	19.5	1-M4	3.4 ~ 4.1
	Α	8	19	8	19	56	—	38	59.8	20.5	14	2.4	14.5	—	6	26	26	1-M5	$7.0 \sim 8.5$
SFC-050DA2	В	8	19	Over 19	30	56	—	38	59.8	20.5	14	2.4	14.5	22	6	26	26	1-M5	$7.0 \sim 8.5$
	С	Over 19	25	Over 19	30	56	—	—	59.8	20.5	14	2.4	—	22	6	26	26	1-M5	$7.0 \sim 8.5$
SFC-055DA2	С	10	30	10	30	63	—	—	68.7	24	15.5	2.6	—	23	7.75	31	31	1-M6	$14 \sim 15$
	Α	11	24	11	24	68	—	46	73.3	25.2	16.5	3.2	17.5	—	7.75	31	31	1-M6	$14 \sim 15$
SFC-060DA2	В	11	24	Over 24	35	68	—	46	73.3	25.2	16.5	3.2	17.5	26.5	7.75	31	31	1-M6	$14 \sim 15$
	С	Over 24	30	Over 24	35	68	—	—	73.3	25.2	16.5	3.2	—	26.5	7.75	31	31	1-M6	$14 \sim 15$
SFC-080DA2	С	18	35	18	40	82	—	—	98	30	22	8	—	28	9	40	38	1-M8	$27 \sim 30$
SFC-090DA2	С	25	40	25	45	94	—	_	98.6	30	22	8.3	_	34	9	47	42	1-M8	$27 \sim 30$
SFC-100DA2	С	32	45	32	45	104	—	—	101.6	30	22	9.8	—	39	9	50	48	1-M8	$27 \sim 30$

* Types A / B / C are automatically specified by Miki Pulley according to the combination of bore diameters you select, and cannot be specified by the customer.

* The øDB value is measured assuming that the head of the clamping bolt is larger than the external diameter of the hub.

* The K dimension is the inner diameter of the element. For d2 dimension exceeding this value, shaft can be inserted only up to LF dimension to the d2 side hub. * The nominal diameter for the clamping bolt M is equal to the quantity minus the nominal diameter of the screw threads, where the quantity is for a hub on one side. * The figures in parentheses () for the SFC-010 are the values when d1 or d2 is ø8 mm.

For length-specified


special order parts

Standard Bore Diameter

			- 1					anda																									
	ninal bore diamet		3	4	5	6	6 .3	5 7	8	9	9 .525	10	11	12	13	14	15	16	17	18	19	20	22	24	25	28	30	32	35	38	40	42	45
	h7 (h6 • g6)	B		•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	j6(Option)	J																			0		0	0		0							
	k6(Option)	K							0	0						0		0			0		0	0				0		0			
	SFC-002DA2	d1 (
		d2 (•																												
	SFC-005DA2	d1 (٠																											
	0.000000	d2 (
	SFC-010DA2	d1 (•																										
		d2 (•	•	•	•	•																									
	SFC-020DA2	d1		•	•	•	•	•	•	•	•	•																					
		d2				•						•																					
	SFC-025DA2	d1			2.1	•	•	•	•	•	•	•	•	•	•	•																	
		d2			2.1	•	•	•	•	•	•	•	•	•	•	•																	
	SFC-030DA2	d1			2.8		•	•	•	•	•	•	•	•	•	•																	
_		d2			2.8							•				•																	
	SFC-035DA2	d1				5	5	6.6	•	•	•	•	•	•	•	•	•	•	_	_	_												
_		d2				5	5	6.6	•	•	•	•	•	•	•	•	•	•	•	•	•												
	SFC-040DA2	d1							9	•	•	•	•	•	•	•	•	•	•	•	•	-											
_		d2							9			•				•					•	•		•									
	SFC-050DA2	d1							18	20	22	22																					
		d2							18	20	22	22	24	26	20																		
	SFC-055DA2	d1										31	34	36	38	•																	
		d2										31	34	36	38																		
	SFC-060DA2	d1											50	51			-			-													
		d2 d1											50	51	•	•	•	•	•														
	SFC-080DA2	d1 d2																															
																				•	•			•		-					-		
	SFC-090DA2	d1 d2																								-			-				
																										-		220					
	SFC-100DA2	d1 d2																										226 226	-	-	-		
		u2																										220					•

 * The shaft tolerance for standard bore diameter is h7 (h6 or g6): designation B. However, for a bore diameter of ø35, the shaft tolerance is ^{+0.010}/_{0.025}.
 * Shaft tolerances j6/k6: designations J/K are optional, and are only supported for bore diameters marked with ○.
 * Bore diameters marked with ● or numbers are supported as the standard bore diameters. Consult Miki Pulley regarding special arrangements which may be possible for other bore diameters.
 * Bore diameters whose fields contain numbers are restricted in their rated torque by the holding power of the shaft connection component because the bore diameter is small. The numbers indicate the rated torque [N•m].

* For nominal bore diameter, select d1 (small diameter)-d2 (large diameter) in that order. * If d1=d2 (same diameters), select B, J, and K in that order.

COUPLINGS

CTROMAGNETIC

ES

Er	NE3
	Metal Disc Couplings SERVOFLEX
	High-rigidity Couplings SERVORIGID
Mat-I C	Metal Slit Couplings HELI-CAL
Antal Countines	Metal Coil Spring Couplings BAUMANNFLEX
	Pin Bushing Couplings PARAFLEX
	Link Couplings SCHMIDT
	Dual Rubber Couplings STEPFLEX
Dibboro	Jaw Couplings MIKI PULLEY STARFLEX
	Jaw Couplings SPRFLEX
	Plastic Bellows Couplings BELLOWFLEX
	Rubber and Plastic Couplings CENTAFLEX

MODELS

SFC	 											
SFS												
SFF	 											
SFM	 											
SFH												

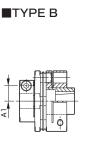
A001

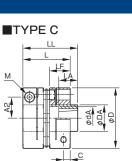
SFC(SA2) Types Single Element Type

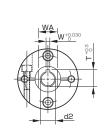
Tapered shaft supported **Options**

Allows coupling via a clamping hub when a taper adapter is mounted on the tapered shaft of a servo motor.

Specifications	;									
Model	Туре	Rated torque [N•m]	Parallel [mm]	Misalignment Angular [°]	t Axial [mm]	Max. rotation speed [min ⁻¹]	Torsional stiffness [N∙m/rad]	Axial stiffness [N/mm]	Moment of inertia [kg•m²]	Mass [kg]
SFC-040SA2- 🗌 B-11BC	В	12	0.02	1	± 0.3	10000	20000	80	26.58 × 10 ⁻⁶	0.131
SFC-0405A2- 🗆 B-11BC	С	12	0.02	1	± 0.3	10000	20000	80	33.28 × 10 ⁻⁶	0.146
	В	25	0.02	1	± 0.4	10000	32000	48	82.91 × 10 ⁻⁶	0.240
SFC-050SA2- 🗆 B-11BC	С	25	0.02	1	± 0.4	10000	32000	48	103.5×10^{-6}	0.258
SFC-050SA2- 🗌 B-14BC	В	25	0.02	1	± 0.4	10000	32000	48	88.72 × 10 ⁻⁶	0.271
SFC-0305A2- 🗆 B-14BC	С	25	0.02	1	± 0.4	10000	32000	48	111.5×10^{-6}	0.301
SFC-050SA2- 🗆 B-16BC	В	25	0.02	1	± 0.4	10000	32000	48	95.44 × 10 ⁻⁶	0.309
SFC-0505A2- 🗆 B-16BC	С	25	0.02	1	± 0.4	10000	32000	48	118.2×10^{-6}	0.338
SFC-055SA2- 🗆 B-14BC	С	40	0.02	1	± 0.42	10000	50000	43	201.1 × 10 ⁻⁶	0.409
SFC-055SA2- 🗌 B-16BC	C	40	0.02	1	± 0.42	10000	50000	43	207.8×10^{-6}	0.446
SFC-060SA2- 🗆 B-16BC	В	60	0.02	1	± 0.45	10000	70000	76.4	228.7 × 10 ⁻⁶	0.475
SFC-0605A2- 🗆 B-16BC	С	60	0.02	1	± 0.45	10000	70000	76.4	287.8 × 10 ⁻⁶	0.517


¹ Types B / C are automatically specified by Miki Pulley according to the bore diameter you select, and cannot be specified by the customer.


* Check the Standard Bore Diameters as rated torque may be restricted by the holding power of the shaft connection component. * Max. rotation speed does not take into account dynamic balance.


* Torsional stiffness values given are measured values for the element alone.

* The moment of inertia and mass are measured for the maximum bore diameter

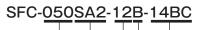
Dimensions

CAD

Model	d2 [mm]	W [mm]	T [mm]	WA [mm]	LA [mm]	dA [mm]	DA [mm]	LL [mm]	D [mm]	L [mm]	LF [mm]	C [mm]	A1 [mm]	A2 [mm]	M Qty - Nominal dia.
SFC-040SA2- 🗆 B-11BC	11	4	12.2	18	16	17	22	44	44	34	15.5	4.5	11	17	1-M4
SFC-050SA2- 🗆 B-11BC	11	4	12.2	18	16	17	22	48.4	56	43.4	20.5	6	14.5	22	1-M5
SFC-050SA2- 🗆 B-14BC	14	4	15.1	24	19	22	28	53.4	56	43.4	20.5	6	14.5	22	1-M5
SFC-050SA2- 🗆 B-16BC	16	5	17.3	24	29	26	30	63.4	56	43.4	20.5	6	14.5	22	1-M5
SFC-055SA2- 🗌 B-14BC	14	4	15.1	24	19	22	28	56.6	63	50.6	24	7.75	_	23	1-M6
SFC-055SA2- 🗆 B-16BC	16	5	17.3	24	29	26	30	66.6	63	50.6	24	7.75	—	23	1-M6
SFC-060SA2- 🗌 B-16BC	16	5	17.3	24	29	26	30	69.6	68	53.6	25.2	7.75	17.5	26.5	1-M6

* For other dimensions, see dimensions for single element type SFC(SA2).

Standard Bore Diameter


				Star	ndard (o	option)	bore di	ameter	, d1 [mr	n] and I	estrict	ed rated	d torque	e[N⋅m]							
Nominal bore diameter	8	9	9.525	10	11	12	13	14	15	16	17	18	19	20	22	24	25	28	30	32	35
Shaft tolerance h7 (h6 · g6) B																					
Shaft tolerance j6(Option) J													0		0	0		0			
Shaft tolerance k6(Option) K	0	0						0		0			0		0	0				0	
SFC-040SA2- 🗆 B-11BC	9		•									•									
SFC-050SA2- B-11BC	18	20	22	22																	
SFC-050SA2- 🗌 B-14BC	18	20	22	22	•	•							•	•	•						
SFC-050SA2- 🗆 B-16BC	18	20	22	22																	
SFC-055SA2- 🗌 B-14BC				31	34	36	38		•	•			•	•	•	•		•	•		
SFC-055SA2- 🗌 B-16BC				31	34	36	38														
SFC-060SA2- 🗆 B-16BC					50	51	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠

* The shaft tolerance for standard bore diameter is h7 (h6 or g6): designation B.

* Shaft tolerances j6/k6: designations J/K are optional, and are only supported for bore diameters marked with 🔾 .

* Bore diameters marked with \blacksquare or numbers are supported as the standard bore diameters. Consult Mike Pulley regarding special arrangements which may be possible for other bore diameters. * Bore diameters whose fields contain numbers are restricted in their rated torque by the holding power of the shaft connection component because the bore diameter is small. The numbers indicate the rated torque [N•m].

How to Place an Order

Bore diamete Size d1 Type _____ SA2: Single element Aluminum alloy hub

[d2] BC BC: Taper adapter *Select d2 for BC. Supported shaft tolerance B: h7 (h6, g6), (Option K: k6, J: j6)

SFC(DA2) Types Double Element Type

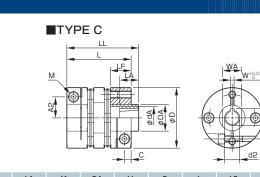
Options Tapered shaft supported

Allows coupling via a clamping hub when a taper adapter is mounted on the tapered shaft of a servo motor.

Specifications

		Rated		Misalignment		Max. rotation	Torsional	Axial	Moment	
Model	Туре	torque [N•m]	Parallel [mm]	Angular [°]	Axial [mm]	speed [min ⁻¹]	stiffness [N∙m/rad]	stiffness [N/mm]	of inertia [kg•m²]	Mass [kg]
SFC-040DA2- 🗆 B-11BC	В	12	0.24	1(On one side)	± 0.6	10000	10000	40	39.42 × 10 ⁻⁶	0.180
SFC-040DAZ- DB-TIBC	С	12	0.24	1(On one side)	± 0.6	10000	10000	40	46.12 × 10 ⁻⁶	0.195
SFC-050DA2- 🗆 B-11BC	В	25	0.28	1(On one side)	± 0.8	10000	16000	24	125.5 × 10 ⁻⁶	0.331
SFC-050DA2- DB-11BC	С	25	0.28	1(On one side)	± 0.8	10000	16000	24	146.1 × 10 ⁻⁶	0.349
	В	25	0.28	1(On one side)	± 0.8	10000	16000	24	131.1 × 10 ⁻⁶	0.362
SFC-050DA2- 🗌 B-14BC	С	25	0.28	1(On one side)	± 0.8	10000	16000	24	154.1 × 10 ⁻⁶	0.392
	В	25	0.28	1(On one side)	± 0.8	10000	16000	24	138.1 × 10 ⁻⁶	0.400
SFC-050DA2- 🗌 B-16BC	С	25	0.28	1(On one side)	± 0.8	10000	16000	24	160.8×10^{-6}	0.430
SFC-055DA2- 🗌 B-14BC	С	40	0.31	1(On one side)	± 0.84	10000	25000	21.5	274.0 × 10 ⁻⁶	0.530
SFC-055DA2- 🗌 B-16BC	С	40	0.31	1(On one side)	± 0.84	10000	25000	21.5	280.5×10^{-6}	0.567
	В	60	0.34	1(On one side)	±0.9	10000	35000	38.2	339.4 × 10 ⁻⁶	0.638
SFC-060DA2- 🗌 B-16BC	С	60	0.34	1(On one side)	± 0.9	10000	35000	38.2	398.5 × 10 ⁻⁶	0.681

* Types B / C are automatically specified by Miki Pulley according to the bore diameter you select, and cannot be specified by the customer.


* Check the Standard Bore Diameters as rated torque may be restricted by the holding power of the shaft connection component.

TYPE B

* Max, rotation speed does not take into account dynamic balance.

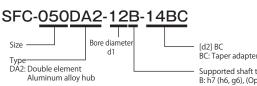
* Torsional stiffness values given are measured values for the element alone. * The moment of inertia and mass are measured for the maximum bore diameter

Dimensions

Model	d2 [mm]	W [mm]	T [mm]	WA [mm]	LA [mm]	dA [mm]	DA [mm]	LL [mm]	D [mm]	L [mm]	LF [mm]	C [mm]	A1 [mm]	A2 [mm]	M Qty - Nominal dia.
SFC-040DA2- 🗆 B-11BC	11	4	12.2	18	16	17	22	58	44	48	15.5	4.5	11	17	1-M4
SFC-050DA2- 🗆 B-11BC	11	4	12.2	18	16	17	22	64.8	56	59.8	20.5	6	14.5	22	1-M5
SFC-050DA2- 🗆 B-14BC	14	4	15.1	24	19	22	28	69.8	56	59.8	20.5	6	14.5	22	1-M5
SFC-050DA2- 🗆 B-16BC	16	5	17.3	24	29	26	30	79.8	56	59.8	20.5	6	14.5	22	1-M5
SFC-055DA2- 🗆 B-14BC	14	4	15.1	24	19	22	28	74.4	63	68.7	24	7.75	_	23	1-M6
SFC-055DA2- 🗆 B-16BC	16	5	17.3	24	29	26	30	84.7	63	68.7	24	7.75	-	23	1-M6
SFC-060DA2- 🗆 B-16BC	16	5	17.3	24	29	26	30	89.3	68	73.3	25.2	7.75	17.5	26.5	1-M6

* For other dimensions, see dimensions for double element type SFC(DA2).

Standard Bore Diameter


				Star	ndard (o	option)	bore di	ameter,	, d1 [mı	m] and i	restricte	ed rated	d torque	e [N∙m]							
Nominal bore diameter	8	9	9.525	10	11	12	13	14	15	16	17	18	19	20	22	24	25	28	30	32	35
Shaft tolerance h7 (h6 · g6) B																					
Shaft tolerance j6(Option) J													0		0	0		0			
Shaft tolerance k6(Option) K	0	0						0		0			0		0	0				0	
SFC-040DA2- 🗌 B-11BC	9		•							•			•								
SFC-050DA2- 🗆 B-11BC	18	20	22	22																	
SFC-050DA2- 🗌 B-14BC	18	20	22	22		•				•			•	•			•				
SFC-050DA2- 🗆 B-16BC	18	20	22	22																	
SFC-055DA2- 🗆 B-14BC				31	34	36	38	٠		•	٠	٠	•	٠	•	٠	٠	٠	٠		
SFC-055DA2- 🗌 B-16BC				31	34	36	38														
SFC-060DA2- 🗆 B-16BC					50	51	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠

* The shaft tolerance for standard bore diameter is h7 (h6 or g6); designation B.

* Shaft tolerances j6/k6: designations J/K are optional, and are only supported for bore diameters marked with 🔿.

* Bore diameters marked with \bullet or numbers are supported as the standard bore diameters. Consult Miki Pulley regarding special arrangements which may be possible for other bore diameters. * Bore diameters whose fields contain numbers are restricted in their rated torque by the holding power of the shaft connection component because the bore diameter is small. The numbers indicate the rated toraue [N•m].

How to Place an Order

BC: Taper adapter *Select d2 for BC.

Supported shaft tolerance B: h7 (h6, g6), (Option K: k6, J: j6)

Web code

COUPLINGS

ETP BUSHINGS
ELECTROMAGNETIC CLUTCHES & BRAKES
SPEED CHANGERS & REDUCERS
INVERTERS
LINEAR SHAFT DRIVES
TORQUE LIMITERS

SERIES

CAD

	Metal Disc Couplings SERVOFLEX
	High-rigidity Couplings SERVORIGID
Metal Co	Metal Slit Couplings HELI-CAL
ounlings	Metal Coil Spring Couplings BAUMANNFLEX
	Pin Bushing Couplings PARAFLEX
	Link Couplings SCHMIDT
	Dual Rubber Couplings STEPFLEX
Rubber a	Jaw Couplings MIKI PULLEY STARFLEX
nd Plastic (Jaw Couplings SPRFLEX
Counlings	Plastic Bellows Couplings BELLOWFLEX
	Rubber and Plastic Couplings

(CEN	IT/	٩FI	LE)	(

MODELS

SFC			
SFS			
SFF			
SFM	 	 	
SFH			

A001

MIKIPULLEY 039

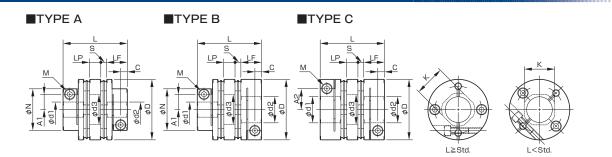
SFC Models

Options For length-specified special order parts

SFC(DA2) type spacer length can be changed to attain the necessary distance between shafts. Specify the length in 1 mm units.

Specifications

Specifi	ications	>									
		Rated		Misal	ignment		Max.		nent	Ma	
Model	Туре	torque [N•m]	Parall	el[mm]	Angular [°]	Axial [mm]	rotation speed		ertia •m²]	[k	
		[ivin]	Min. L	Max. L	LJ	[11111]	[min - 1]	Min. L	Max. L	Min. L	Max. L
SFC-005DA2	С	0.6	0.03	0.20	0.5(On one side)	± 0.1	10000	0.33×10^{-6}	0.62×10^{-6}	0.009	0.017
SFC-010DA2	C	1	0.08	0.44	1(On one side)	± 0.2	10000	0.72 × 10 ⁻⁶	1.38×10^{-6}	0.014	0.026
SFC-020DA2	С	2	0.10	0.46	1(On one side)	± 0.33	10000	3.02×10^{-6}	5.30×10^{-6}	0.031	0.054
SFC-025DA2	C	4	0.09	0.46	1(On one side)	± 0.38	10000	4.55×10^{-6}	7.95 × 10 ⁻⁶	0.036	0.061
	Α	5	0.11	0.48	1(On one side)	± 0.4	10000	6.09 × 10 ⁻⁶	12.80×10^{-6}	0.046	0.085
SFC-030DA2	В	5	0.11	0.48	1(On one side)	± 0.4	10000	8.11 × 10 ⁻⁶	14.82×10^{-6}	0.053	0.091
	С	5	0.11	0.48	1(On one side)	± 0.4	10000	10.22×10^{-6}	16.93×10^{-6}	0.061	0.099
SFC-035DA2	С	10	0.15	0.54	1(On one side)	± 0.5	10000	23.85×10^{-6}	35.97 × 10 ⁻⁶	0.108	0.161
	Α	12	0.15	0.54	1(On one side)	± 0.6	10000	25.06×10^{-6}	44.76×10^{-6}	0.107	0.174
SFC-040DA2	В	12	0.15	0.54	1(On one side)	± 0.6	10000	30.89×10^{-6}	50.62 × 10 ⁻⁶	0.116	0.182
	С	12	0.15	0.54	1(On one side)	± 0.6	10000	37.58×10^{-6}	57.31 × 10 ⁻⁶	0.130	0.197
	A	25	0.16	0.63	1(On one side)	± 0.8	10000	77.42 × 10 ⁻⁶	144.3×10^{-6}	0.205	0.347
SFC-050DA2	В	25	0.16	0.63	1(On one side)	± 0.8	10000	97.97 × 10 ⁻⁶	164.8×10^{-6}	0.225	0.365
	С	25	0.16	0.63	1(On one side)	± 0.8	10000	120.8×10^{-6}	187.6 × 10 ⁻⁶	0.252	0.394
SFC-055DA2	С	40	0.16	0.60	1(On one side)	± 0.84	10000	226.8 × 10 ⁻⁶	325.0×10^{-6}	0.378	0.538
	A	60	0.19	0.63	1(On one side)	± 0.9	10000	210.8×10^{-6}	340.1 × 10 ⁻⁶	0.382	0.567
SFC-060DA2	В	60	0.19	0.63	1(On one side)	± 0.9	10000	269.9×10^{-6}	399.2 × 10 ⁻⁶	0.424	0.609
	С	60	0.19	0.63	1(On one side)	± 0.9	10000	333.5×10^{-6}	462.8×10^{-6}	0.484	0.669


* Types A / B / C are automatically specified by Miki Pulley according to the combination of bore diameters you select, and cannot be specified by the customer * Check the Standard Bore Diameters for SFC(DA2) as there may be limitations on the rated torque caused by the holding power of the coupling shaft section.

* Max. rotation speed does not take into account dynamic balance.

* The moment of inertia and mass are measured for the maximum bore diameter.

* See Specifications for SFC(DA2) for stiffness values.

Dimensions

d2 [mm] d1 [mm] L [mm] LF D Ν A1 A2 С d3 Tightening torque [N•m] S Κ Μ Model Туре [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] Qty - No ninal dia Min. Std. Min. Max. Max. Min. Max. SFC-005DA2 С 3 3 6 16 23.2 21 40 7.85 4.8 2.5 6.5 1-M2 $0.4 \sim 0.5$ 6 1 6.5 SFC-010DA2 С 8 19 25.9 24 1.05 5.8(6) 8.5 8.5 -M2.5(M2) 1.0~1.1(0.4~0.5) 3 8 3 45 9.15 3.15 SFC-020DA2 4 10 4 11 26 32.3 29 10.75 1.65 9.5 1-M2.5 1.0 ~ 1.1 С 50 3.3 10.6 10.6 SFC-025DA2 С 5 14 5 14 29 32.8 29 50 10.75 1.9 11 3.3 15 14.5 1-M2.5 1.0 ~ 1.1 5 10 5 10 34 21.6 37.8 34 55 12.4 2.5 8 3.75 15 14.5 1-M3 1.5 ~ 1.9 А SFC-030DA2 В 5 10 Over 10 16 34 21.6 37.8 34 55 12.4 2.5 8 12.5 3.75 15 14.5 1-M3 $1.5 \sim 1.9$ С Over 10 14 Over 10 16 34 37.8 34 55 12.4 2.5 12.5 3.75 14.5 1-M3 1.5 ~ 1.9 15 SFC-035DA2 С 16 6 19 39 48 43 65 15.5 3 14 4.5 17 17 1-M4 $3.4 \sim 4.1$ 6 15 8 15 44 29.6 48 43 15.5 11 4.5 20 19.5 1-M4 $3.4 \sim 4.1$ 65 Α 8 3 SFC-040DA2 В 8 15 Over 15 24 44 29.6 48 43 65 15.5 3 11 17 4.5 20 19.5 1-M4 $3.4 \sim 4.1$ 48 43 17 1-M4 3.4 ~ 4.1 c Over 15 19 Over 15 24 44 65 15.5 3 4.5 20 19.5 19 8 19 56 38 59.8 53 80 20.5 2.4 14.5 26 26 1-M5 7.0~8.5 А 8 6 19 30 56 59.8 53 80 20.5 2.4 14.5 22 26 1-M5 7.0~8.5 SFC-050DA2 В 8 Over 19 38 6 26 Over 19 25 Over 19 30 56 59.8 53 80 20.5 2.4 22 6 26 26 1-M5 $7.0 \sim 8.5$ С SFC-055DA2 7.75 $14 \sim 15$ C 10 30 10 30 63 68.7 60 85 24 2.6 23 31 31 1-M6 А 11 24 11 24 68 46 73.3 65 90 25.2 3.2 17.5 7.75 31 31 1-M6 $14 \sim 15$ SFC-060DA2 В 11 24 Over 24 35 68 46 73.3 65 90 25.2 3.2 17.5 26.5 7.75 31 31 1-M6 $14 \sim 15$ С Over 24 30 Over 24 35 68 73.3 65 90 25.2 3.2 26.5 7.75 31 31 1-M6 $14 \sim 15$

* Types A / B / C are automatically specified by Miki Pulley according to the combination of bore diameters you select, and cannot be specified by the customer.

* The nominal diameter for the clamping bolt M is equal to the quantity minus the nominal diameter of the screw threads, where the quantity is for a hub on one side.

* The figures in parentheses () for the SFC-010 are the values when d1 or d2 is ø8 mm.

* Compatible lengths L range from the minimum L dimension to the maximum L dimension shown in the above table. Specify in 1 mm units.

* When the L dimension is shorter than the standard, the left/right clamping bolt phases will be off by 45°

* Check Standard Bore Diameters for SFC(DA2) for the standard bore diameters.

How to Place an
now to riace an
Order
Order

SFC-040DA2-14B-15B-L60

Bore diameter d

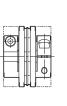
(Large diameter

Size Bore diameter d1 Type (Small diameter)

Aluminum allov hub

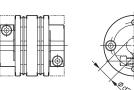
DA2: Double element

Length designation % Specify the L dimension in 1 mm increments.


Options For keyway milling applications

If you are using a keyed shaft, we can mill a keyway in the clamping hub to your specifications.

Keyway milling standard



SFC(SA2)

+
Kryk vy
\times

	H9 keyway width standards												JS9 keyway width standards											
a.	aft t	olerance	$d1 \cdot d2$	Keyway width W1 • W2 [mm]	Keyway height T1 • T2 [mm]	Shaftdia	Shaft	tolerance		Keyway width W1 • W2 [mm]	Keyway height T1 • T2 [mm]	Shaftdia	ninal boı Shaft tol	erance		Keyway width W1 • W2 [mm]	Keyway height	Shaftdia	Shaft to	ore dia olerance	Bore dia.	Keyway width W1 • W2 [mm]	Keyway height T1 • T2 [mm]	
		6 k6						j6 k6				_	h7 j6							6 k6				
8 B		- KH	8	3 ^{+ 0.025}	9.4 ^{+ 0.3}		BH		20	6 ^{+ 0.030}	22.8 ^{+0.3} 0	8	BJ —	KJ	8	3 ± 0.0125		20			20		22.8 ^{+0.3}	
9 B	H	- KH	9	3 ^{+ 0.025}	10.4 ^{+ 0.3}	22	BH .	лн кн	22	6 ^{+ 0.030}	24.8 ^{+0.3} ₀	9	BJ —	- KJ	9	3 ±0.0125	10.4 ^{+ 0.3}	22	B1 1	IN K.	22	6 ± 0.0150	24.8 ^{+0.3} ₀	
10 B	H		10	3 ^{+ 0.025}	$11.4 {}^{+ 0.3}_{0}$	24	BH .	лн кн	24	8 + 0.036	27.3 ^{+ 0.3}	10	BJ —		10	3 ± 0.0125	$11.4 {}^{+}_{0.3}$	24	BT 1	IJ K.	24	8 ±0.0180	27.3 ^{+ 0.3}	
11 B	H -		11	4 + 0.030	$12.8 {}^{+ 0.3}_{0}$	25	BH		25	8 + 0.036	28.3 ^{+ 0.3}	11	BJ —		11	4 ±0.0150	12.8 ^{+ 0.3}	25	BJ -		25	8 ± 0.0180	28.3 ^{+ 0.3}	
12 B	H-		12	$4 \begin{array}{c} + 0.030 \\ 0 \end{array}$	$13.8 {}^{+ 0.3}_{0}$	28	BH .	JH —	28	$8 \begin{array}{c} + 0.036 \\ 0 \end{array}$	$31.3 {}^{+ 0.3}_{0}$	12	BJ —		12	4 ± 0.0150	$13.8 {}^{+ 0.3}_{0}$	28	BJ J	IJ —	28	8 ± 0.0180	$31.3 {}^{+ 0.3}_{0}$	
13 B	H-		13	5 ^{+ 0.030}	$15.3 {}^{+ 0.3}_{0}$	30	BH		30	$8 \begin{array}{c} + 0.036 \\ 0 \end{array}$	33.3 ^{+ 0.3}	13	BJ —		13	5 ± 0.0150	15.3 ^{+ 0.3}	30	BJ -		30	8 ± 0.0180	33.3 ^{+ 0.3}	
14 B	H -	— кн	14	5 + 0.030	$16.3 {}^{+ 0.3}_{0}$	32	BH	— кн	32	$10^{+0.036}_{-0}$	$35.3 {}^{+}_{0.3}$	14	BJ —	KJ	14	5 ± 0.0150	$16.3 {}^{+}_{0.3}$	32	BJ -	– K.	32	10 ± 0.0180	35.3 ^{+ 0.3}	
15 B	H-		15	5 + 0.030	$17.3 {}^{+ 0.3}_{0}$	35	BH		35	$10^{+0.036}_{0}$	38.3 ^{+ 0.3}	15	BJ —		15	5 ± 0.0150	17.3 ^{+ 0.3}	35	BJ -		35	10 ± 0.0180	38.3 ^{+ 0.3}	
16 B	H	— КН	16	5 + 0.030	$18.3 {}^{+ 0.3}_{0}$	38	BH	— кн	38	$10^{+0.036}_{0}$	$41.3 {}^{+ 0.3}_{0}$	16	BJ —	кJ	16	5 ± 0.0150	$18.3 {}^{+ 0.3}_{0}$	38	BJ -	– ĸ.	38	10 ± 0.0180	$41.3 {}^{+ 0.3}_{0}$	
17 B	H-		17	5 ^{+ 0.030}	$19.3 {}^{+ 0.3}_{0}$	40	BH		40	$12^{+0.043}_{0}$	43.3 ^{+ 0.3}	17	BJ —		17	5 ± 0.0150	19.3 ^{+ 0.3}	40	BJ -		40	12 ± 0.0215	43.3 + 0.3	
18 B	H -		18	6 ^{+ 0.030}	$20.8 {}^{+ 0.3}_{0}$	42	BH		42	$12^{+0.043}_{0}$	$45.3 {}^{+}_{0.3}$	18	BJ —		18	6 ± 0.0150	20.8 ^{+ 0.3}	42	BJ -		42	12 ± 0.0215	$45.3 {}^{+ 0.3}_{0}$	
19 B	н.	н кн	19	6 ^{+ 0.030}	21.8 ^{+ 0.3}	45	BH		45	$14^{+0.043}_{0}$	48.8 ^{+ 0.3}	19	BJ J.	I KJ	19	6 ± 0.0150	21.8 ^{+ 0.3}	45	BJ -		45	14 ± 0.0215	48.8 ^{+ 0.3}	

Standard Bore Diameter

* We can also handle standards not listed above. Consult Miki Pulley.

						Star	ndard (optio	n) bore	diam	eter, d	1/d2 [ı	mm] aı	nd rest	ricted	rated	torque	e [N·m]	l							
N	ominal bore diame	ter	8	9	10	11	12	13	14	15	16	17	18	19	20	22	24	25	28	30	32	35	38	40	42	45
Shaf	h7 (h6 • g6)	В																								
Shaft to lerance	j6(Option)	J												0		0	0		0							
ance	k6(Option)	Κ	0	0					0		0			0		0	0				0		0			
	SFC-025	d1	•	•	•	•	•	•	•																	
		d2	•	•	•	•	•	•	•																	
	SFC-030	d1	•	•	•	•	•	•	•																	
s		d2																								
Supported bore diameter for each model	SFC-035	d1 d2																								
inte	SEC-040	d1	9																							
q p		d2	9																							
ore		d1	18	20	22																					
dia	SFC-050	d2	18	20	22																					
me		d1	10	20	31	34	36	38																		
eter	SFC-055	d2			31	34	36	38																		
for		d1			51	50	51	50																		
ea	SFC-060	d2				50	51																			
ch n		d1				50	51																			
por	SFC-080	d2											•	•		•	•	•	•	•	•	•	•	•		
ē		d1																•	•	•	•	•				
	SFC-090	d2																			•					
	650 400	d1																			226				٠	۲
	SFC-100	d2																			226	٠	٠			۲

 * The shaft tolerance for standard bore diameter is h7 (h6 or g6): designation B. However, for a bore diameter of ø35, the shaft tolerance is ^{+ 0.010}/_{- 0.025}.
 * Shaft tolerances j6/k6: designations J/K are optional, and are only supported for bore diameters marked with ○.
 * Bore diameters marked with ● or numbers are supported as the standard bore diameters. Consult Miki Pulley regarding special arrangements which may be possible for other bore diameters. * B

				because the bore diameter is small. The numbers indicate the rated
How to Place an	SFC-060SA2-12B	<u>8H-14KJ</u>		
Order		Bore diameter d2 (Large diameter)	• • Affixing method KJ: k6 shaft + JS9 keyway • Affixing method BH: h7 (h6, g6) shaft + H9 k	* For nominal bore diameter, select d1 (small diameter) -d2 (large diameter) in that order. * If d1=d2 (same diameters), select B, J, and K in that order. B · J · K · BH · BJ · JH · JJ · KH · KJ xeyway

COUPLINGS

ELECTROMAGNETIC

SPEED CHANGERS

SERIES

SEF	RIES
	Metal Disc Couplings SERVOFLEX
Metal Couplings	High-rigidity Couplings SERVORIGID
	Metal Slit Couplings HELI-CAL
	Metal Coil Spring Couplings BAUMANNFLEX
	Pin Bushing Couplings PARAFLEX
	Link Couplings SCHMIDT
Rubber and Plastic Couplings	Dual Rubber Couplings STEPFLEX
	Jaw Couplings MIKI PULLEY STARFLEX
	Jaw Couplings SPRFLEX
	Plastic Bellows Couplings BELLOWFLEX
	Rubber and Plastic

Rub	ber	and	Pla	stic
Cou		nac		

CENTAFLEX

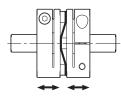
MODELS SFC

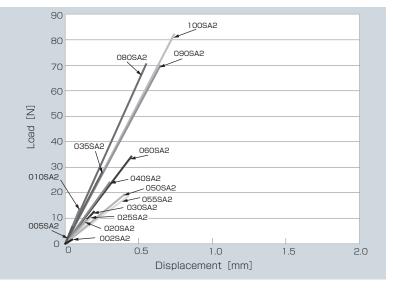
•••••	• • • •	•••	• •	• •	• •	•	• •	• •	•	• •	•	• •	•	•	• •	•	•	•	•	•
SFS																				
SFF																				
SFM																				
SFH																				

To download CAD data or product catalogs:

www.mikipulley.co.jp

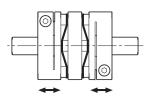
A001 Web code

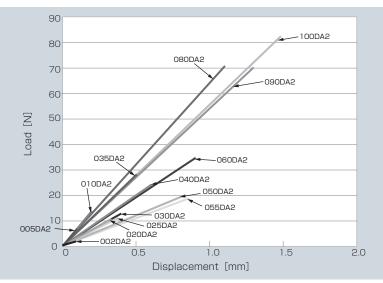


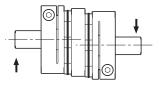

SFC Models

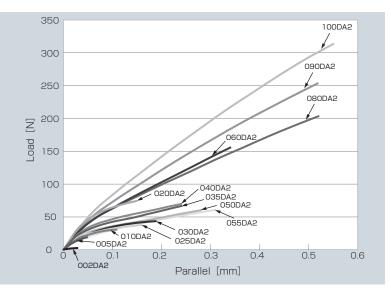
Items Checked for Design Purposes

Spring Characteristics SFC(SA2)


Axial load and amount of displacement




Spring Characteristics SFC(DA2)


Axial load and amount of displacement

Parallel misalignment direction load and amount of displacement

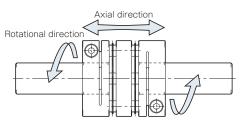
Special Items to Take Note of

You should note the following to prevent any problems.

(1) Always be careful of parallel, angular, and axial misalignment.

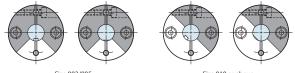
(2) Always tighten bolts with the specified torque.

Precautions for Handling


Couplings are assembled at high accuracy using a special mounting jig to ensure accurate concentricity of left and right internal diameters. Take extra precautions when handling couplings, should strong shocks be given on couplings, it may affect mounting accuracy and cause the parts to break during use.

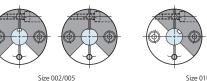
- (1) Couplings are designed for use within an operating temperature range of -30° C to 100° C. Although the couplings are designed to be waterproof and oilproof, do not subject them to excessive amounts of water and oil as it may cause part deterioration.
- (2) Handle the element with care as it is made of a thin stainless steel metal disc, also making sure to be careful so as not to injure vourself.
- (3) Do not tighten up clamping bolts until after inserting the mounting shaft.

(4) Mounting shaft is assumed to be a round shaft.

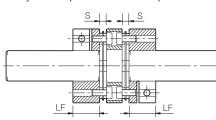

Mounting

- (1) Check that coupling clamping bolts have been loosened and remove any rust, dust, oil residue, etc. from inner diameter surfaces of the shaft and couplings. In particular, never allow oil or grease containing antifriction or other agent (molvbdenum-, silicon-, or fluorine-based), which would dramatically affect the friction coefficient, to contact the surface
- (2) Be careful when inserting the couplings into the shaft so as not to apply excessive force of compression or tensile force to the element. Be particularly careful not to apply excessive compressing force needlessly when inserting couplings into the paired shaft after attaching the couplings to the motor.
- (3) With two of the clamping bolts loosened, make sure that couplings move gently along the axial and rotational directions. Readjust the centering of the two shafts if the couplings fail to move smoothly enough. This method is recommended as a way to easily check the concentricity of the left and right sides. If unable to use the same method, check the mounting accuracy using machine parts quality control procedures or an alternative method.

(4)As a general rule, round shafts are to be used for the paired mounting shaft. If needing to use a shaft with a different shape, be careful not to insert it into any of the locations indicated in the diagrams below. (Grayed areas indicate areas wherein clamping hub shifts when clamped. Do not allow keyways, D-shaped cuts, or other insertions in these areas.) Placing the shaft in an undesirable location may cause the couplings to break or lead to a loss in shaft holding power. It is recommended that you use only round shafts to ensure full utilization of the entire range of coupling performance.


Proper Mounting Examples

Size 002/005


Size 010 or above

Poor Mounting Examples

Size 010 or above

(5) Insert and mount each shaft far enough in that the paired mounting shaft touches the shaft along the entire length of the clamping hub of the coupling (LF dimension), as shown in the diagram below, and does not interfere with the elements, spacers or the other shaft. In addition, restrict the dimensions between clamping hub faces (S dimensions in the diagram) within the allowable misalignment of the axial direction displacement with respect to a reference value. Note that the tolerance values were calculated based on the assumption that both the level of parallel misalignment and angular deflection are zero. Adjust to keep this value as low as possible.

Model	LF [mm]	S [mm]
SFC-002	5.9	0.55
SFC-005	7.85	1
SFC-010	9.15	1.05
SFC-020	10.75	1.65
SFC-025	10.75	1.9
SFC-030	12.4	2.5
SFC-035	15.5	3
SFC-040	15.5	3
SFC-050	20.5	2.4
SFC-055	24	2.6
SFC-060	25.2	3.2
SFC-080	30	8
SFC-090	30	8.3
SFC-100	30	9.8

(6) Check to make sure that no compression or tensile force is being applied along the axial direction before tightening up the two clamping bolts. Use a calibrated torque wrench to tighten the clamping bolts to within the tightening torgue range listed below.

1 5	5 5 .	5
Model	Clamping bolts	Tightening torque [N·m]
SFC-002	M1.6	$0.23 \sim 0.28$
SFC-005	M2	$0.4 \sim 0.5$
SFC-010	M2.5 (M2)	$1.0 \sim 1.1 \; (0.4 \sim 0.5)$
SFC-020 • 025	M2.5	1.0 ~ 1.1
SFC-030	M3	1.5 ~ 1.9
SFC-035 • 040	M4	3.4 ~ 4.1
SFC-050	M5	$7.0 \sim 8.5$
SFC-055 • 060	M6	14~15
SFC-080 • 090 • 100	M8	$27 \sim 30$

¹ Use M2 bolts on SFC-010 models with holes with a diameter of ø8 mm.

* The start and end numbers for the tightening torque ranges are between the minimum and maximum values. Tighten bolts to a tightening torque within the specified range for the model used

Suitable Torque Screwdriver/Torque Wrench

Nominal bolt diameter	Tightening torque [N•m]	Torque screwdriver/ wrench	Hexagon bit/ head	Coupling size		
M1.6	$0.23 \sim 0.28$	CN30LTDK	CB 1.5mm	002		
M2	$0.4 \sim 0.5$	CN60LTDK	SB 1.5mm	005 · 010		
M2.5	$1.0 \sim 1.1$	CN120LTDK	SB 2mm	010 • 020 • 025		
M3	$1.5 \sim 1.9$	CN200LTDK	SB 2.5mm	030		
M4	$3.4 \sim 4.1$	CN500LTDK	SB 3mm	035 • 040		
M5	$7.0 \sim 8.5$	N10LTDK	SB 4mm	050		
M6	$14 \sim 15$	N25LCK	25HCK 5mm	055 · 060		
M8	$27 \sim 30$	N50LCK	50HCK 6mm	080 · 090 · 100		

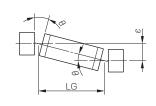
* Torque screwdriver (wrench)/bit (head) models are those of Nakamura Mfg. Co., Ltd

COUPLINGS

ETP BUSHINGS
ELECTROMAGNETIC CLUTCHES & BRAKES
SPEED CHANGERS & REDUCERS
INVERTERS
LINEAR SHAFT DRIVES
TORQUE LIMITERS
ROSTA

SERIES

	Metal Disc Couplings SERVOFLEX
	High-rigidity Couplings SERVORIGID
Metal C	Metal Slit Couplings HELI-CAL
ouplings	Metal Coil Spring Couplings BAUMANNFLEX
	Pin Bushing Couplings PARAFLEX
	Link Couplings SCHMIDT
	Dual Rubber Couplings STEPFLEX
Rubber a	Jaw Couplings MIKI PULLEY STARFLEX
nd Plastic	Jaw Couplings SPRFLEX
Couplings	Plastic Bellows Couplings BELLOWFLEX
	Rubber and Plastic Couplings CENTAFLEX
мс	DELS
SF	:
SF	5


SFS				
SFF	 		 	
SFM	 	 	 	
SFH	 	 	 	

SFC Models

Items Checked for Design Purposes

Length-specified Special Order Parts Option

Specify any length for the length-specified special order option for the SFC (DA2). Use the following formula to calculate the amount of allowable parallel misalignment, adjust it to be no greater than that value, and then mount the coupling.

$\varepsilon = \tan \theta \times \text{LG}$

 ε :Allowable parallel misalignment [mm] heta :Allowable angular deflection [°]

LG = LP + S LP: Total length of spacer [mm]

S : Gap size between clamping hub and spacer [mm]

Options for Keyway Milling

Options for keyway milling are available on request. However, because they are designed such that torque is tranferred to the friction coupling by the clamp mechanism, care should be taken not to exceed the coupling's permitted torque during use. Note also the following issues:

- (1) Only ever use keys that are no wider than the keyway. Using keys that are a tight fit could results in damage during mounting or operation.
- (2) The positional accuracy of keyway milling is visual. If positional accuracy relative to keyway hubs is required, contact Miki Pulley.
- (3) Using JS9 class tolerances provides a tight fit, so couplings may be compressed when mounted on shafts. Take care not to further compress the couplings.
- (4) Setting the fit of the key and keyway too loosely may result in play that generates dust. Also take care that the key does not come loose.
- (5) Adding a set screw over the keyway is not recommended as it may lower clamp performance, and the set screw may also become loose within the torque range you use or during forward/reverse operation. It may also impair the structural strength of the clamping hub or damage the coupling.

Selection Order of Nominal Bore Diameters when Ordering

When specifying bore diameters, you should basically specify d1 (small diameter)-d2 (large diameter), and always specify d2 for taper adapters mounted on tapered shafts. However, where d1=d2 (same diameters), note the selection order below for each nominal bore diameter when ordering.

Nominal bore diameter symbol	Nominal bore diameter symbol description	Туре	Selection diameter	Selection order
в	Shaft tolerance h7 (h6, g6)	Standard	d1 • d2	1
J	Shaft tolerance j6	Option	d1 • d2	2
к	Shaft tolerance k6	Option	d1 • d2	3
BH	Shaft tolerance h7 (h6, g6) + keyway H9	Option	d1 • d2	4
BJ	Shaft tolerance h7 (h6, g6) + keyway JS9	Option	d1 • d2	5
JH	Shaft tolerance j6 + keyway H9	Option	d1 • d2	6
L	Shaft tolerance j6 + keyway JS9	Option	d1 • d2	7
КН	Shaft tolerance k6 + keyway H9	Option	d1 • d2	8
КJ	Shaft tolerance k6 + keyway JS9	Option	d1 • d2	9
BC	Taper adapter mounted on tapered shaft	Option	d2	10

Clamping Bolts

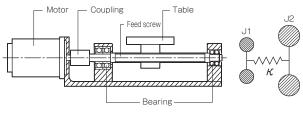
Use Miki Pulley-specified clamping bolts because they are processed with solid lubrication films (except for SFC-002 M1.6). Applying adhesives to prevent loosening, oil, or the like to a clamping bolt will alter torque coefficients due to those lubricating components, creating excessive axial forces and potentially damaging the clamping bolt or coupling. Consult Miki Pulley before using such products.

Surface Processing of Coupling Bore Diameter

The bore diameters may or may not have surface processing in some components due to the circumstances of processing. This does not affect coupling performance. Consult Miki Pulley if your usage conditions require that bore diameters be surface processed or not.

Points to Consider Regarding the Feed Screw System

In feed screw systems using a stepper motor or servo motor, the pulsation natural frequency of the stepper motor and the torsional natural frequency of the system as a whole may cause the system to resonate, or the gain adjustment of the servo motor may cause the system to oscillate.


If resonance occurs, the resonant rotation speed must be skipped, or if oscillation occurs, adjustment will need to be made such as by using the filter function or other electrical control system to resolve the issue.

In either instance, to handle resonance and oscillation, it will be necessary to take into account the torsional natural frequency for the system overall during the design stage, including the torsional stiffness for the coupling and feed screw section and the moment of inertia and other characteristics. Please contact Miki Pulley with any questions regarding these issues.

How to Find the Natural Frequency of a Feed Screw System

Select a coupling based on the nominal and maximum torque of the stepper motor or servo motor.

Next, find the overall natural frequency, Nf, from the torsional stiffness of the coupling and feed screw, κ , the moment of inertia of driving side, J1, and the moment of inertia of driven side, J2, for the feed screw system shown below.

Natural frequency of overall feed screw system Nf [Hz]

 κ : Torsional stiffness of the coupling and feed screw [N-m/rad] J1: Moment of inertia of driving side [kg-m²] J2: Moment of inertia of driven side [kg-m²]

Torsional spring constant of coupling and feed screw κ [N·m/rad]

J2

 $\frac{1}{\kappa} = \frac{1}{\kappa_c} + \frac{1}{\kappa_b}$

 $Nf = \frac{1}{2\pi} \sqrt{\kappa} ($

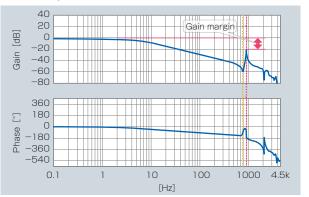
 κ c: Torsional spring constant of coupling [N-m/rad] κ b: Torsional spring constant of feed screw [N-m/rad]

Driving moment of inertia J1 [kg·m²]

Jm: Moment of inertia of servomotor $[kg{\cdot}m^2]$ Jc: Moment of inertia of coupling $[kg{\cdot}m^2]$

Driven moment of inertia J2 $[kg \cdot m^2]$

 $J2=Jb+Jt+\frac{Jc}{2}$


Jb: Moment of inertia of feedscrew [kg·m²] Jt: Moment of inertia of table [kg·m²] Jc: Moment of inertia of coupling [kg·m²]

Moment of inertia of table Jt [kg·m²]

 $Jt = \frac{M \times P^2}{2}$ $4\pi^2$

M: Mass of table [kg] P: Lead of feed screw [m]

Since it is easier for oscillation to occur when the gain margin with natural frequency is 10 dB or lower, it is necessary for the natural frequency to be set high with a therefore higher gain margin at the design stage, or to adjust the natural frequency using the servomotor's electric tuning function (filter function) so as to avoid oscillation.

COUPLINGS

Selection Procedures

Easy Selection Chart

(1) Find the torque, Ta, applied to the coupling using the output capacity, P, of the driver and the usage rotation speed, n.

Ta
$$[N \cdot m] = 9550 \times \frac{P [kW]}{n [min^{-1}]}$$

(2) Determine the factor K from the load properties, and find the corrected torque, Td, applied to the coupling.

For servo motor drive, multiply the maximum torque, Ts, by the usage factor K = 1.2 to 1.5.

Td $[N \cdot m] = Ts [N \cdot m] \times (1.2 \sim 1.5)$

(3) Set the size so that the rated coupling torque, Tn, is higher than the corrected torque, Td.

$\mathsf{Tn} [\mathsf{N} \cdot \mathsf{m}] \ge \mathsf{Td} [\mathsf{N} \cdot \mathsf{m}]$

- (4) The rated torque of the coupling may be limited by the bore diameter of the coupling. See the Specifications and Standard Bore Diameters tables.
- (5) Check that the mount shaft is no larger than the maximum bore diameter of the coupling.

*Contact Miki Pulley for assistance with any device experiencing extreme periodic vibrations.

SERIES

Metal Disc Couplings

SERVOFLEX

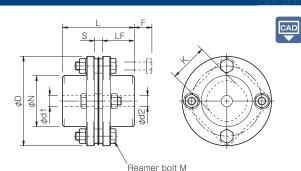
High-rigidity SERVORIGID Metal Slit HELI-CAL Metal Coil Spring BAUMANNFLEX Pin Bushing PARAFLEX Link Couplings SCHMIDT Dual Rubber STEPFLEX Jaw Couplings MIKI PULLEY STARFLEX Jaw Couplings SPRFLEX **Plastic Bellows** BELLOWFLEX **Rubber and Plastic** CENTAFLEX ODELS С

SFS			
•••••	••••	•••••	 •••••
SFF			
		•••••	
SFM			
SFH			

Select a coupling size based on the rated output and the rated/maximum torque of the ordinary servo motor. The torque characteristics of servo motors vary between manufacturers, so check the specifications in the manufacturer catalog before finalizing a coupling size selection.

Servo motor specifications					Corresponding SERVOFLEX type specifications					
Rated output [W] [kW]	Rated rotation speed [min ⁻¹]	Rated torque [N•m]	Max. torque [N•m]	Shaft diameter [mm]	Single element type	Double element type	Rated torque [N•m]	Max. bore diameter [mm]	Outer diameter [mm]	
3W	$3000 \sim 6000$	0.0096	0.029	4	SFC-002SA2	SFC-002DA2	0.25	5	12	S
5W	$3000\sim 6000$	0.016	0.048	5	SFC-002SA2	SFC-002DA2	0.25	5	12	etal
10W	$3000 \sim 6000$	0.032	0.096	6	SFC-005SA2	SFC-005DA2	0.6	6	16	Metal Couplings
15W	$3000 \sim 6000$	0.047	0.143	4	SFC-002SA2	SFC-002DA2	0.25	5	12	oling
20W	$3000 \sim 6000$	0.0638	0.191	6	SFC-005SA2	SFC-005DA2	0.6	6	16	st
30W	$3000 \sim 6000$	0.098	0.322	8	SFC-010SA2	SFC-010DA2	1	8	19	
50W	$3000 \sim 6000$	0.16	0.64	8	SFC-010SA2	SFC-010DA2	1	8	19	
100W	$3000 \sim 6000$	0.32	1.28	8	SFC-020SA2	SFC-020DA2	2	11	26	
150W	$3000 \sim 6000$	0.477	1.67	8	SFC-025SA2	SFC-025DA2	4	14	29	
200W	$3000 \sim 6000$	0.64	2.23	14	SFC-025SA2	SFC-025DA2	4	14	29	
300W	$3000 \sim 6000$	0.95	3.72	14	SFC-030SA2	SFC-030DA2	5	16	34	
400W	$3000 \sim 6000$	1.3	5	14	SFC-035SA2	SFC-035DA2	10	19	39	
450W	1500	2.86	8.92	19	SFC-040SA2	SFC-040DA2	12	24	44	2
500W	2000	2.4	7.2	24	SFC-040SA2	SFC-040DA2	12	24	44	addr
600W	$3000 \sim 6000$	1.91	5.73	19	SFC-035SA2	SFC-035DA2	10	19	39	er an
750W	$3000 \sim 6000$	2.387	9	19	SFC-040SA2	SFC-040DA2	12	24	44	dP
750W	2000	3.6	10.7	22	SFC-050SA2	SFC-050DA2	25	30	56	astio
850W	1500	5.39	13.8	19	SFC-050SA2	SFC-050DA2	25	30	56	<u> </u>
1kW	$3000 \sim 6000$	3.18	12.5	24	SFC-050SA2	SFC-050DA2	25	30	56	Rubber and Plastic Coupling
1kW	2000	5	16.6	24	SFC-050SA2	SFC-050DA2	25	30	56	sbu
1.5kW	2000	7.5	21.6	35	SFC-060SA2	SFC-060DA2	60	35	68	
2kW	$3000 \sim 6000$	6.8	21	24	SFC-055SA2	SFC-055DA2	40	30	63	
2kW	2000	9.54	31	35	SFC-060SA2	SFC-060DA2	60	35	68	
2.2kW	2000	10.5	36.7	28	SFC-060SA2	SFC-060DA2	60	35	68	мо
2.5kW	$3000 \sim 6000$	12	46	24	SFC-060SA2	SFC-060DA2	60	35	68	SFC
3kW	$3000 \sim 6000$	12	35	28	SFC-060SA2	SFC-060DA2	60	35	68	
3kW	2000	14.3	42.9	35	SFC-060SA2	SFC-060DA2	60	35	68	SFS
3.5kW	$3000 \sim 6000$	11.1	33.4	28	SFC-060SA2	SFC-060DA2	60	35	68	SFF
3.5kW	2000	17	55	35	SFC-080SA2	SFC-080DA2	100	40	82	
4kW	$3000 \sim 6000$	22	39.2	28	SFC-060SA2	SFC-060DA2	60	35	68	SFM
4kW	2000	19.1	66.9	35	SFC-080SA2	SFC-080DA2	100	40	82	SFH
4.5kW	1500	28.5	105	35	SFC-090SA2	SFC-090DA2	180	45	94	
5kW	$3000 \sim 6000$	15.9	47.6	28	SFC-080SA2	SFC-080DA2	100	40	82	
5kW	2000	23.9	71.6	35	SFC-080SA2	SFC-080DA2	100	40	82	
6kW	2000	38	130	35	SFC-090SA2	SFC-090DA2	180	45	94	
7kW	1500	44.6	134	42	SFC-090SA2	SFC-090DA2	180	45	94	
7.5kW	1500	48	139	42	SFC-100SA2	SFC-100DA2	250	45	104	
9kW	$3000 \sim 6000$	28.6	85	35	SFC-090SA2	SFC-090DA2	180	45	94	
11kW	2000	52.5	158	42	SFC-100SA2	SFC-100DA2	250	45	104	

SFS(S) Types Single Element Type

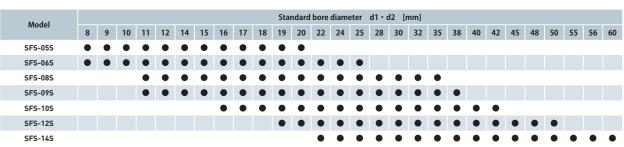

Specifications

	Rated	Misalignment		Max.	Torsional	Axial	Moment of	
Model	torque [N ∙ m]	Angular [°]	Axial [mm]	rotation speed [min ⁻¹]	stiffness [N • m/rad]	stiffness [N/mm]	inertia [kg • m²]	Mass [kg]
SFS-05S	20	1	± 0.6	25000	16000	43	0.11 × 10 ⁻³	0.30
SFS-06S	40	1	± 0.8	20000	29000	45	0.30 × 10 ⁻³	0.50
SFS-08S	80	1	± 1.0	17000	83000	60	0.87 × 10 ⁻³	1.00
SFS-09S	180	1	± 1.2	15000	170000	122	1.60 × 10 ⁻³	1.40
SFS-10S	250	1	± 1.4	13000	250000	160	2.60 × 10 ⁻³	2.10
SFS-12S	450	1	± 1.6	11000	430000	197	6.50 × 10 ⁻³	3.40
SFS-14S	800	1	± 1.8	9500	780000	313	9.90 × 10 ⁻³	4.90

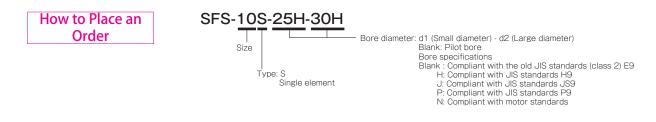
*Max. rotation speed does not take into account dynamic balance.

*The moment of inertia and mass are measured for the maximum bore diameter.

Dimensions



											Unit [mm]
Model	d1 • d2		D N	N		LF	s	F	к	м	
Model	Pilot bore	Min.	Max.	U	N	-		5	r	ĸ	IVI
SFS-05S	7	8	20	56	32	45	20	5	11	24	4-M5 × 22
SFS-06S	7	8	25	68	40	56	25	б	10	30	4-M6 × 25
SFS-08S	10	11	35	82	54	66	30	6	11	38	4-M6 × 29
SFS-09S	10	11	38	94	58	68	30	8	21	42	4-M8 × 36
SFS-10S	15	16	42	104	68	80	35	10	16	48	4-M8 × 36
SFS-12S	18	19	50	126	78	91	40	11	23	54	4-M10 × 45
SFS-14S	20	22	60	144	88	102	45	12	31	61	4-M12 × 54

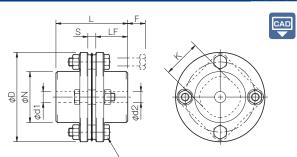

*Pilot bores are to be drilled into the part.

*The nominal diameter of the reamer bolt M is equal to the quantity minus the nominal diameter of the screw threads times the nominal length

Standard Bore Diameter

* Bore diameters marked with
are supported as standard bore diameter. See the standard hole-drilling standards for information.

SFS(S-C) Types Single Element Type/Electroless Nickel Plating Specification

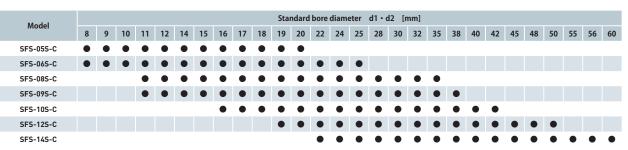

Specifications

	Rated		nment	Max.	Torsional	Axial	Moment of	
Model	torque [N • m]	Angular [°]	Axial [mm]	rotation speed [min ⁻¹]	stiffness [N • m/rad]	stiffness [N/mm]	inertia [kg • m²]	Mass [kg]
SFS-05S-C	15	1	± 0.6	25000	16000	43	0.11 × 10 ⁻³	0.30
SFS-06S-C	30	1	± 0.8	20000	29000	45	0.30 × 10 ⁻³	0.50
SFS-08S-C	60	1	± 1.0	17000	83000	60	0.87 × 10 ⁻³	1.00
SFS-09S-C	135	1	± 1.2	15000	170000	122	1.60 × 10 ⁻³	1.40
SFS-10S-C	190	1	± 1.4	13000	250000	160	2.60 × 10 ⁻³	2.10
SFS-12S-C	340	1	± 1.6	11000	430000	197	6.50 × 10 ⁻³	3.40
SFS-14S-C	600	1	± 1.8	9500	780000	313	9.90 × 10 ⁻³	4.90

*Max. rotation speed does not take into account dynamic balance

*The moment of inertia and mass are measured for the maximum bore diameter.

Dimensions



Reamer bolt M

										Onic[init]
Model	d1	d1 • d2		N		LF	ç	-	к	м
Model	Min.	Max.	D	N	-	-	5	r	ĸ	IVI
SFS-05S-C	8	20	56	32	45	20	5	11	24	4-M5 × 22
SFS-06S-C	8	25	68	40	56	25	6	10	30	4-M6 × 25
SFS-08S-C	11	35	82	54	66	30	6	11	38	4-M6 × 29
SFS-09S-C	11	38	94	58	68	30	8	21	42	4-M8 × 36
SFS-10S-C	16	42	104	68	80	35	10	16	48	4-M8 × 36
SFS-12S-C	19	50	126	78	91	40	11	23	54	4-M10 × 45
SFS-14S-C	22	60	144	88	102	45	12	31	61	4-M12 × 54

*The nominal diameter of the reamer bolt M is equal to the quantity minus the nominal diameter of the screw threads times the nominal length

Standard Bore Diameter

⁺ Bore diameters marked with 🌒 are supported as standard bore diameter. See the standard hole-drilling standards for information

	Bore diameter: d1 (Small diameter) - d2 (Large diameter)	
S	Bore specifications	

Blank : Compliant with the old JIS standards (class 2) E9

A003

- H: Compliant with UIS standards H9 J: Compliant with JIS standards JS9 P: Compliant with JIS standards JS9 N: Compliant with motor standards P9

:00	IPLINGS	

ELECTROMAGNETIC CLUTCHES & BRAKES
SPEED CHANGERS & REDUCERS
INVERTERS
LINEAR SHAFT DRIVES
TORQUE LIMITERS

SERIES

Unit [mm]

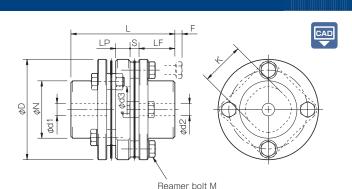
_	
	Metal Disc Couplings SERVOFLEX
Matal Coundinana	High-rigidity Couplings SERVORIGID
	Metal Slit Couplings HELI-CAL
	Metal Coil Spring Couplings BAUMANNFLEX
	Pin Bushing Couplings PARAFLEX
	Link Couplings SCHMIDT
	Dual Rubber Couplings STEPFLEX
	Jaw Couplings MIKI PULLEY STARFLEX
	Jaw Couplings SPRFLEX
	Plastic Bellows Couplings BELLOWFLEX
	Rubber and Plastic Couplings CENTAFLEX

MODELS
SFC
SFS
SFF
SFM
SFH

Web code

MIKIPULLEY 047

SFS(W) Types Double Element Type


Specifications

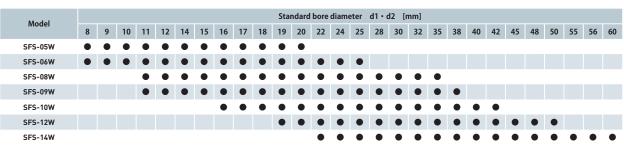
	Rated	Misalignment			Max.	Torsional	Axial	Moment of	
Model	torque [N • m]	Parallel [mm]	Angular [°]	Axial [mm]	rotation speed [min ⁻¹]	stiffness [N ∙ m/rad]	stiffness [N/mm]	inertia [kg·m²]	Mass [kg]
SFS-05W	20	0.2	1 (On one side)	± 1.2	10000	8000	21	0.14 × 10 ⁻³	0.40
SFS-06W	40	0.3	1 (On one side)	±1.6	8000	14000	22	0.41 × 10 ⁻³	0.70
SFS-08W	80	0.3	1 (On one side)	± 2.0	6800	41000	30	1.10 × 10 ⁻³	1.30
SFS-09W	180	0.5	1 (On one side)	± 2.4	6000	85000	61	2.20 × 10 ⁻³	2.10
SFS-10W	250	0.5	1 (On one side)	± 2.8	5200	125000	80	3.60 × 10 ⁻³	2.80
SFS-12W	450	0.6	1 (On one side)	± 3.2	4400	215000	98	9.20 × 10 ⁻³	4.90
SFS-14W	800	0.7	1 (On one side)	± 3.6	3800	390000	156	15.00 × 10 ⁻³	7.10

*Max. rotation speed does not take into account dynamic balance.

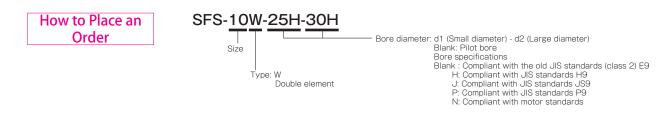
*The moment of inertia and mass are measured for the maximum bore diameter.

Dimensions

D	N	L	LF	LP	s	


Unit [mm]

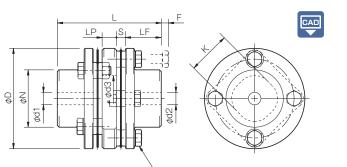
Model		d1 • d2		D	N		LF	LP	s	F	d3	V	м
Model	Pilot bore	Min.	Max.	U	IN	L	LF	LF	3	r	us	ĸ	141
SFS-05W	7	8	20	56	32	58	20	8	5	4	20	24	8-M5 × 15
SFS-06W	7	8	25	68	40	74	25	12	6	3	24	30	8-M6 × 18
SFS-08W	10	11	35	82	54	84	30	12	6	2	28	38	$8-M6 \times 20$
SFS-09W	10	11	38	94	58	98	30	22	8	12	32	42	8-M8 × 27
SFS-10W	15	16	42	104	68	110	35	20	10	7	34	48	$8-M8 \times 27$
SFS-12W	18	19	50	126	78	127	40	25	11	10	40	54	8-M10 × 32
SFS-14W	20	22	60	144	88	144	45	30	12	15	46	61	8-M12 × 38


*Pilot bores are to be drilled into the part.

*The nominal diameter of the reamer bolt M is equal to the quantity minus the nominal diameter of the screw threads times the nominal length.

Standard Bore Diameter

* Bore diameters marked with • are supported as standard bore diameter. See the standard hole-drilling standards for information.

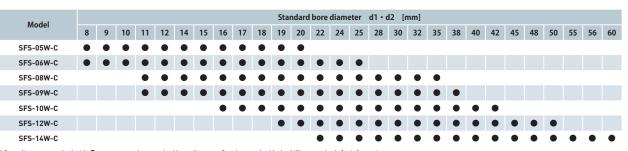

SFS(W-C) Types Double Element Type/Electroless Nickel Plating Specification

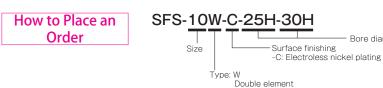
Specifications

	Rated		Misalignment		Max.	Torsional	Axial	Moment of	
Model	torque [N • m]	Parallel [mm]	Angular [°]	Axial [mm]	rotation speed [min ⁻¹]	stiffness [N • m/rad]	stiffness [N/mm]	inertia [kg·m²]	Mass [kg]
SFS-05W-C	15	0.2	1 (On one side)	± 1.2	10000	8000	21	0.14 × 10 ⁻³	0.40
SFS-06W-C	30	0.3	1 (On one side)	± 1.6	8000	14000	22	0.41 × 10 ⁻³	0.70
SFS-08W-C	60	0.3	1 (On one side)	± 2.0	6800	41000	30	1.10 × 10 ⁻³	1.30
SFS-09W-C	135	0.5	1 (On one side)	± 2.4	6000	85000	61	2.20 × 10 ⁻³	2.10
SFS-10W-C	190	0.5	1 (On one side)	± 2.8	5200	125000	80	3.60 × 10 ⁻³	2.80
SFS-12W-C	340	0.6	1 (On one side)	± 3.2	4400	215000	98	9.20 × 10 ⁻³	4.90
SFS-14W-C	600	0.7	1 (On one side)	± 3.6	3800	390000	156	15.00 × 10 ⁻³	7.10

*Max. rotation speed does not take into account dynamic balance. *The moment of inertia and mass are measured for the maximum bore diameter.

Dimensions




												onic [mm]
Model	d1 •	• d2	D	N		LF	LP	s	F	d3	к	м
Model	Min.	Max.	U	N	L	LF	LF	3	r	us	ĸ	IVI
SFS-05W-C	8	20	56	32	58	20	8	5	4	20	24	8-M5 × 15
SFS-06W-C	8	25	68	40	74	25	12	6	3	24	30	8-M6 × 18
SFS-08W-C	11	35	82	54	84	30	12	6	2	28	38	$8-M6 \times 20$
SFS-09W-C	11	38	94	58	98	30	22	8	12	32	42	8-M8 × 27
SFS-10W-C	16	42	104	68	110	35	20	10	7	34	48	8-M8 × 27
SFS-12W-C	19	50	126	78	127	40	25	11	10	40	54	8-M10 × 32
SFS-14W-C	22	60	144	88	144	45	30	12	15	46	61	8-M12 × 38

*The nominal diameter of the reamer bolt M is equal to the quantity minus the nominal diameter of the screw threads times the nominal length.

Standard Bore Diameter

* Bore diameters marked with • are supported as standard bore diameter. See the standard hole-drilling standards for information

Bore diameter: d1 (Small diameter) - d2 (Large diameter) Bore specifications

Bore specifications Blank : Compliant with the old JIS standards (class 2) E9 H: Compliant with JIS standards H9 J: Compliant with JIS standards JS9 P: Compliant with JIS standards P9

- N: Compliant with motor standards

COUPLINGS

ELECTROMAGNETIC

SERIES

Unit [mm]

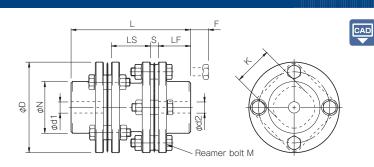
	Metal Disc Couplings SERVOFLEX
	High-rigidity Couplings SERVORIGID
Metal C	Metal Slit Couplings HELI-CAL
ouplings	Metal Coil Spring Couplings BAUMANNFLEX
	Pin Bushing Couplings PARAFLEX
	Link Couplings SCHMIDT
	Dual Rubber Couplings STEPFLEX
Rubber a	Jaw Couplings MIKI PULLEY STARFLEX
nd Plastic	Jaw Couplings SPRFLEX
Couplings	Plastic Bellows Couplings BELLOWFLEX
	Rubber and Plastic Couplings CENTAFLEX
мс	DELS
SF	2
SF	5
SFI	F

A003 Web code

SFM

SFH

SFS(G) Types Floating Shaft Type


Specifications

	Rated		Misalignment			Torsional	Axial	Moment of	
Model	torque [N • m]	Parallel [mm]	Angular [°]	Axial [mm]	rotation speed [min ⁻¹]	stiffness [N • m/rad]	stiffness [N/mm]	inertia [kg·m²]	Mass [kg]
SFS-05G	20	0.5	1 (On one side)	± 1.2	20000	8000	21	0.20 × 10 ⁻³	0.50
SFS-06G	40	0.5	1 (On one side)	± 1.6	16000	14000	22	0.55 × 10 ⁻³	0.90
SFS-08G	80	0.5	1 (On one side)	± 2.0	13000	41000	30	1.50 × 10 ⁻³	1.70
SFS-09G	180	0.6	1 (On one side)	± 2.4	12000	85000	61	2.90 × 10 ⁻³	2.40
SFS-10G	250	0.6	1 (On one side)	± 2.8	10000	125000	80	4.60 × 10 ⁻³	3.30
SFS-12G	450	0.8	1 (On one side)	± 3.2	8000	215000	98	11.80 × 10 ⁻³	5.80
SFS-14G	800	0.9	1 (On one side)	± 3.6	7000	390000	156	21.20 × 10 ⁻³	8.60

*Max. rotation speed does not take into account dynamic balance.

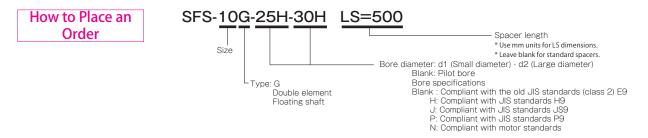
*The moment of inertia and mass are measured for the maximum bore diameter.

Dimensions

Unit [mm]

Model		d1 • d2		D	N		LF	LS		-	к	м
Model	Pilot bore	Min.	Max.	D	N	L	LF	LS	2	r	ĸ	IVI
SFS-05G	7	8	20	56	32	74	20	24	5	11	24	$8-M5 \times 22$
SFS-06G	7	8	25	68	40	86	25	24	6	10	30	8-M6 × 25
SFS-08G	10	11	35	82	54	98	30	26	6	11	38	8-M6 × 29
SFS-09G	10	11	38	94	58	106	30	30	8	21	42	8-M8 × 36
SFS-10G	15	16	42	104	68	120	35	30	10	16	48	8-M8 × 36
SFS-12G	18	19	50	126	78	140	40	38	11	23	54	8-M10 × 45
SFS-14G	20	22	60	144	88	160	45	46	12	31	61	8-M12 × 54

*Pilot bores are to be drilled into the part.

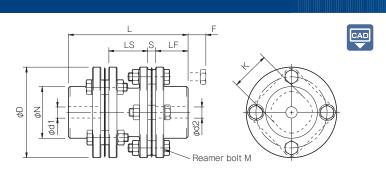

*If you require a product with an LS dimension that exceeds those above, contact Miki Pulley with your required dimension [mm]. Please contact Miki Pulley for assistance if the LS dimension is less than those above or if LS \geq 1000.

*The nominal diameter of the reamer bolt M is equal to the quantity minus the nominal diameter of the screw threads times the nominal length.

Standard Bore Diameter

											Sta	ndard	bore	diam	eter	d1 • d	d2 [r	nm]										
Model	8	9	10	11	12	14	15	16	17	18	19	20	22	24	25	28	30	32	35	38	40	42	45	48	50	55	56	60
SFS-05G	٠	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲																
SFS-06G	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠													
SFS-08G				٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠									
SFS-09G				٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠								
SFS-10G								٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠						
SFS-12G											٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠			
SFS-14G													٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•

* Bore diameters marked with • are supported as standard bore diameter. See the standard hole-drilling standards for information.


SFS(G-C) Types Floating Shaft Type/Electroless Nickel Plating Specification

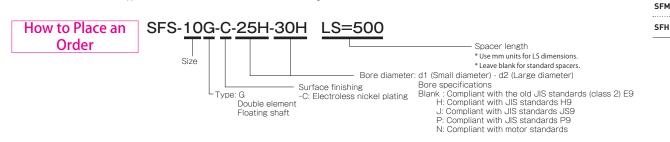
Specifications

	Rated		Misalignment		Max.	Torsional	Axial	Moment of	
Model	torque [N • m]	Parallel [mm]	Angular [°]	Axial [mm]	rotation speed [min ⁻¹]	stiffness [N • m/rad]	stiffness [N/mm]	inertia [kg·m²]	Mass [kg]
SFS-05G-C	15	0.5	1 (On one side)	± 1.2	20000	8000	21	0.20 × 10 ⁻³	0.50
SFS-06G-C	30	0.5	1 (On one side)	± 1.6	16000	14000	22	0.55 × 10 ⁻³	0.90
SFS-08G-C	60	0.5	1 (On one side)	± 2.0	13000	41000	30	1.50 × 10 ⁻³	1.70
SFS-09G-C	135	0.6	1 (On one side)	± 2.4	12000	85000	61	2.90 × 10 ⁻³	2.40
SFS-10G-C	190	0.6	1 (On one side)	± 2.8	10000	125000	80	4.60 × 10 ⁻³	3.30
SFS-12G-C	340	0.8	1 (On one side)	± 3.2	8000	215000	98	11.80 × 10 ⁻³	5.80
SFS-14G-C	600	0.9	1 (On one side)	± 3.6	7000	390000	156	21.20 × 10 ⁻³	8.60

*Max. rotation speed does not take into account dynamic balance. *The moment of inertia and mass are measured for the maximum bore diameter.

Dimensions

Model	d1	• d2	D	N		LF	LS	ç	-	к	м
model	Min.	Max.	U	N	L	LF	LS	2	r	ĸ	IVI
SFS-05G-C	8	20	56	32	74	20	24	5	11	24	$8-M5 \times 22$
SFS-06G-C	8	25	68	40	86	25	24	6	10	30	8-M6 × 25
SFS-08G-C	11	35	82	54	98	30	26	6	11	38	8-M6 × 29
SFS-09G-C	11	38	94	58	106	30	30	8	21	42	8-M8 × 36
SFS-10G-C	16	42	104	68	120	35	30	10	16	48	8-M8 × 36
SFS-12G-C	19	50	126	78	140	40	38	11	23	54	8-M10 × 45
SFS-14G-C	22	60	144	88	160	45	46	12	31	61	8-M12 × 54


* If you require a product with an LS dimension that exceeds those above, contact Miki Pulley with your required dimension [mm]. Please contact Miki Pulley for assistance if the LS dimension is less than those above or if LS \geq 1000.

* Please note that when the LS dimension exceeds 100 mm with the electroless nickel plating specification (SFS- 🗆 G-C), the insertion length of the shaft cannot exceed the LS dimension. * The nominal diameter of the reamer bolt M is equal to the quantity minus the nominal diameter of the screw threads times the nominal length.

Standard Bore Diameter

Model											Sta	ndard	bore	diam	eter	d1 • d	d2 [r	mm]										
Model	8	9	10	11	12	14	15	16	17	18	19	20	22	24	25	28	30	32	35	38	40	42	45	48	50	55	56	60
SFS-05G-C	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠																
SFS-06G-C	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠													
SFS-08G-C				٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠									
SFS-09G-C				٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠								
SFS-10G-C								٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠						
SFS-12G-C											٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠			
SFS-14G-C													٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠

* Bore diameters marked with • are supported as standard bore diameter. See the standard hole-drilling standards for information.

COUPLINGS

ETP BUSHINGS
ELECTROMAGNETIC
CLUTCHES & BRAKES
SPEED CHANGERS
& REDUCERS
INVERTERS
LINEAR SHAFT DRIVES

SERIES

Unit [mm]

	Metal Disc Couplings SERVOFLEX
Metal Counlings	High-rigidity Couplings SERVORIGID
	Metal Slit Couplings HELI-CAL
	Metal Coil Spring Couplings BAUMANNFLEX
	Pin Bushing Couplings PARAFLEX
	Link Couplings SCHMIDT
	Dual Rubber Couplings STEPFLEX
Rubber and Plast	Jaw Couplings MIKI PULLEY STARFLEX
	Jaw Couplings SPRFLEX

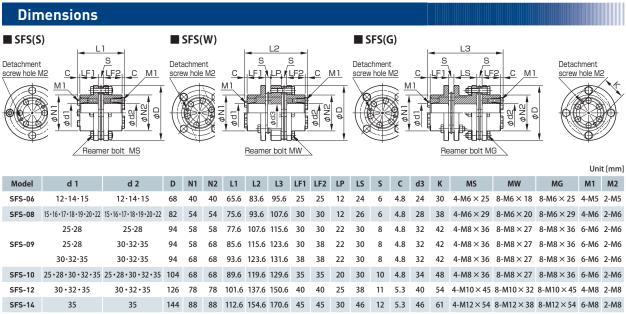
BELLOWFLEX Rubber and Plastic Couplings CENTAFLEX

MODELS SFC SFS SFF

SFS Models

Options Frictional coupling hub

The hub contains a frictional coupling element enabling more accurate installation.


Specifications

Specificatio	ns								
Model	Rated	Parallel	Misalignment Angular Axial rot		Max. rotation speed	tation speed stiffness		Moment of inertia	Mass [kg]
	[N • m]	[mm]	[°]	[mm]	[min ⁻¹]	[N • m/rad]	[N/mm]	[kg • m²]	- 5-
SFS-06S- 🗌 M- 🗌 M	40	-	1	± 0.8	5000	29000	45	0.30 × 10 ⁻³	0.70
SFS-08S- 🗌 M- 🗌 M	80	-	1	± 1.0	5000	83000	60	0.93 × 10 ⁻³	1.30
SFS-09S- 🗌 M- 🗌 M	180	-	1	± 1.2	5000	170000	122	1.80 × 10 ⁻³	1.80
SFS-10S- 🗆 M- 🗆 M	250	-	1	± 1.4	5000	250000	160	2.70 × 10 ⁻³	2.30
SFS-12S- 🗌 M- 🗌 M	450	-	1	± 1.6	5000	430000	197	6.80 × 10 ⁻³	4.10
SFS-14S- 🗆 M- 🗆 M	580	-	1	± 1.8	5000	780000	313	14.01 × 10 ⁻³	6.40
			Misalignment						
Model	Rated torque [N•m]	Parallel [mm]	Angular [°]	Axial [mm]	Max. rotation speed [min ⁻¹]	Torsional stiffness [N•m/rad]	Axial stiffness [N/mm]	Moment of inertia [kg • m²]	Mass [kg]
SFS-06W- 🗆 M- 🗆 M	40	0.3	1 (On one side)	± 1.6	5000	14000	22	0.41 × 10 ⁻³	0.90
SFS-08W- 🗆 M- 🗆 M	80	0.3	1 (On one side)	± 2.0	5000	41000	30	1.16×10^{-3}	1.60
SFS-09W- 🗆 M- 🗆 M	180	0.5	1 (On one side)	± 2.4	5000	85000	61	2.40 × 10 ⁻³	2.50
SFS-10W- 🗆 M- 🗆 M	250	0.5	1 (On one side)	± 2.8	5000	125000	80	3.70 × 10 ⁻³	3.00
SFS-12W- 🗆 M- 🗆 M	450	0.6	1 (On one side)	± 3.2	4400	215000	98	9.50 × 10 ⁻³	5.60
SFS-14W- 🗌 M- 🗌 M	580	0.7	1 (On one side)	± 3.6	3800	390000	156	19.11 × 10 ⁻³	8.60
			Misalignment						
Model	Rated torque [N • m]	Parallel [mm]	Angular [°]	Axial [mm]	Max. rotation speed [min ⁻¹]	Torsional stiffness [N•m/rad]	Axial stiffness [N/mm]	Moment of inertia [kg • m²]	Mass [kg]
SFS-06G- 🗆 M- 🗌 M	40	0.5	1 (On one side)	± 1.6	5000	14000	22	0.55 × 10 ⁻³	1.10
SFS-08G- 🗌 M- 🗌 M	80	0.5	1 (On one side)	± 2.0	5000	41000	30	1.56 × 10 ⁻³	2.00
SFS-09G- 🗆 M- 🗌 M	180	0.6	1 (On one side)	± 2.4	5000	85000	61	3.10 × 10 ⁻³	2.80
SFS-10G- 🗆 M- 🗌 M	250	0.6	1 (On one side)	± 2.8	5000	125000	80	4.70 × 10 ⁻³	3.50
SFS-12G- 🗆 M- 🗌 M	450	0.8	1 (On one side)	± 3.2	5000	215000	98	12.10 × 10 ⁻³	6.50
SFS-14G- 🗌 M- 🗌 M	580	0.9	1 (On one side)	± 3.6	5000	390000	156	25.31 × 10 ⁻³	10.10

*Check the Standard Bore Diameters as there may be limitations on the rated torque caused by the holding power of the coupling shaft section.

*Max, rotation speed does not take into account dynamic balance

*The moment of inertia and mass are measured for the maximum bore diameter.

* If you require a product with an LS dimension other than that for SFS(G) type, contact Miki Pulley with your required dimension. Please contact Miki Pulley for assistance if LS ≧ 1000. * The nominal diameters of each bolt and tap are equal to the quantity minus the nominal diameter of the screw threads times the nominal length. The quantities for the pressure bolt M1 and detachment screw

hole M2 are quantities for the hub on one side

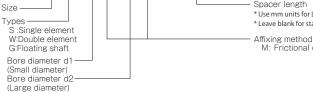
ELECTROMAGNETIC

SPEED CHANGERS

COUPLINGS

Standard Bore Diameter Standard bore diameter d2 [mm] SFS-06 12M 14M 15M 16M 17M 18M 19M 20M 22M 25M 28M 30M 32M 35M 12M Standard bore 14M diameter d1 [mm] 15M Standard bore diameter d2 [mm] SES-08 12M 14M 15M 20M 22M 25M 28M 30M 32M 35M 16M 17M 18M 19M 15M 16M 17M Standard bore 18M diameter d1 [mm] 19M • 20M 22M Standard bore diameter d2 [mm] SFS-09 12M 14M 15M 16M 17M 18M 19M 20M 22M 25M 28M 30M 32M 35M 25M 28M Standard bore 30M diameter d1 [mm] 32M 35M Standard bore diameter d2 [mm] SFS-10 12M 14M 15M 16M 17M 18M 19M 20M 22M 25M 28M 30M 32M 35M 25M 28M Standard bore 30M diameter d1 [mm] 32M 35M Standard bore diameter d2 [mm] SFS-12 12M 14M 15M 16M 17M 18M 19M 20M 22M 25M 28M 30M 32M 35M 30M 380 380 380 Standard bore 32M 400 400 diameter d1 [mm] 35M Standard bore diameter d2 [mm] SFS-14 12M 14M 15M 16M 17M 18M 19M 20M 22M 25M 28M 30M 32M 35M •

Standard bore diameter d1 [mm] 35M


* Bore diameters marked with • or numbers are supported as the standard bore diameters. Consult Miki Pulley regarding special arrangements which may be possible for other bore diameters * Bore diameters whose fields contain numbers are restricted in their rated torque by the holding power of the shaft connection component because the bore diameter is small. The numbers indicate the rated torque [N•m].

^t Where a bore diameter is not given above and is small, please check first; model may be restricted in its rated torgue.

* The recommended processing tolerance for paired mounting shafts is the h7 (h6 or g6) class. However, for a bore diameter of ø35, the shaft tolerance is ± 0.000

How to Place an Order

SFS	-10G	-25M-	-30M	LS=500

Spacer length * Use mm units for LS dimensions. * Leave blank for standard spacers. Affixing method M: Frictional coupling

SEF	RIES
	Metal Disc Couplings SERVOFLEX
	High-rigidity Couplings SERVORIGID
Metal Co	Metal Slit Couplings HELI-CAL
ouplings	Metal Coil Spring Couplings BAUMANNFLEX
	Pin Bushing Couplings PARAFLEX
	Link Couplings SCHMIDT
	Dual Rubber Couplings STEPFLEX

MIKI PULLEY STARFLEX Jaw Couplings SPRFLEX

Plastic Bellows

BELLOWFLEX **Rubber and Plastic**

CENTAFLEX

MODELS

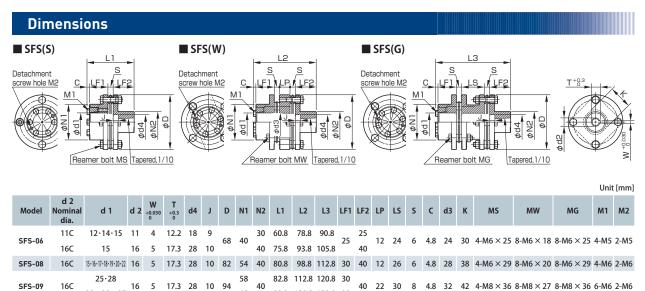
SFC	 	 												
SFS											•		•	
SFF	 	 		•••								•		
SFM	 	 												
SFH														

To download CAD data or product catalogs:

www.mikipulley.co.jp

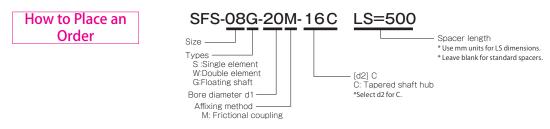
A003

SFS Models


Options Tapered Shaft Supported

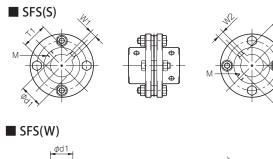
Supports servo motor tapered shafts.

Specificatio	ns									
Model	Rated		Misalignment		Max. rotation speed	Torsional stiffness	Axial stiffness	Moment of inertia	Mass	
Model	torque [N ∙ m]	Parallel [mm]	Angular [°]	Axial [mm]	[min ⁻¹]	[N • m/rad]	[N/mm]	[kg • m ²]	[kg]	
SFS-06S- 🗌 M-11C	40	-	1	± 0.8	5000	29000	45	0.29 × 10 ⁻³	0.60	
SFS-06S- 🗌 M-16C	40	-	1	± 0.8	5000	29000	45	0.34 × 10 ⁻³	0.70	
SFS-08S- 🗌 M-16C	80	-	1	± 1.0	5000	83000	60	0.84 × 10 ⁻³	1.20	
SFS-09S- 🗌 M-16C	180	-	1	± 1.2	5000	170000	122	1.50 × 10 ⁻³	1.60	
			Misalignment			Torsional stiffness [N•m/rad]				
Model	Rated torque [N•m]	Parallel [mm]	Angular [°]	Axial [mm]	Max. rotation speed [min ⁻¹]		Axial stiffness [N/mm]	Moment of inertia [kg • m²]	Mass [kg]	
SFS-06W- 🗆 M-11C	40	0.3	1 (On one side)	±1.6	5000	14000	22	0.40 × 10 ⁻³	0.80	
SFS-06W- 🗆 M-16C	40	0.3	1 (On one side)	± 1.6	5000	14000	22	0.45 × 10 ⁻³	0.90	
SFS-08W- 🗆 M-16C	80	0.3	1 (On one side)	± 2.0	5000	41000	30	1.07 × 10 ⁻³	1.50	
SFS-09W- 🗌 M-16C	180	0.5	1 (On one side)	± 2.4	5000	85000	61	2.10 × 10 ⁻³	2.30	
	Rated	Misalignment			Max.	Torsional	Axial	Moment of		
Model	torque [N • m]	Parallel [mm]	Angular [°]	Axial [mm]	rotation speed [min ⁻¹]	stiffness [N • m/rad]	stiffness [N/mm]	inertia [kg • m²]	Mass [kg]	
SFS-06G- 🗌 M-11C	40	0.5	1 (On one side)	± 1.6	5000	14000	22	0.54 × 10 ⁻³	1.00	
SFS-06G- 🗌 M-16C	40	0.5	1 (On one side)	± 1.6	5000	14000	22	0.59 × 10 ⁻³	1.10	
SFS-08G- 🗌 M-16C	80	0.5	1 (On one side)	± 2.0	5000	41000	30	1.47 × 10 ⁻³	1.90	
SFS-09G- 🗌 M-16C	180	0.6	1 (On one side)	± 2.4	5000	85000	61	2.80 × 10 ⁻³	2.60	


There may be limitations on the rated torque caused by the holding power of the coupling shaft section. If the bore diameter is not standard and is small, please check first.

* Max. rotation speed does not take into account dynamic balance. * The moment of inertia and mass are measured for the maximum bore diameter.

30 · 32 · 35 68 90.8 120.8 128.8 38


* If you require a product with an LS dimension other than that for SFS(G) type, contact Miki Pulley with your required dimension. Please contact Miki Pulley for assistance if LS ≧ 1000. * The nominal diameters of each bolt and tap are equal to the quantity minus the nominal diameter of the screw threads times the nominal length. * The machining tolerance for paired mounting shafts of the hub on the friction-coupled side is h7 (h6 or g6) class.

COUPLINGS

ETP BUSHINGS

Standard Hole-Drilling Standards

Set

screw hole

[M]

_

2-M4 8H

2-M4

2-M4

2-M4

2-M4

2-M4

2-M4

2-M4

2-M6

2-M6

2-M6

2-M8

2-M8

bor

2-M4 9H

10H 10

2-M4 11H 11 +0.018

12H 12

15H 15

2-M4 16H 16 + 0.018

17H 17

19H 19

 $14H \ 14 \ {}^{+ 0.018}_{0}$

 $18H \ 18 \ ^{+ \ 0.018}_{0}$

22H 22 + 0.021

24H 24 + 0.021

25H 25 + 0.021

35H 35 + 0.025 0

 $40H \ 40 \ ^{+ \ 0.025}_{0}$

2-M6 28H 28 + 0.021

2-M6 30H 30 +0.021

Keyway height [T1 • T2]

Keyway width

[W1 • W2]

Tolerance

_

5 + 0.050

24 24 ^{+0.021} 7 ^{+0.061} _{+0.025} 27.0 ^{+0.3} ₀

28 28 $^{+0.021}_{0}$ 7 $^{+0.061}_{+0.025}$ 31.0 $^{+0.3}_{0}$

 $35 \begin{array}{c} {}^{+0.025}_{0} \\ 10 \begin{array}{c} {}^{+0.061}_{+0.025} \\ {}^{+0.3}_{0} \end{array} \\ 38.5 \begin{array}{c} {}^{+0.3}_{0} \\ \end{array}$

40 + 0.025 = 10 + 0.061 + 0.025 + 0.3 = 43.5 + 0.3

42 42 $^{+0.025}_{0}$ 12 $^{+0.075}_{+0.032}$ 45.5 $^{+0.3}_{0}$

45 45 ^{+0.025} 12 ^{+0.075} _{+0.032} 48.5 ^{+0.3}

 $4 \begin{array}{c} {}^{+\,0.050}_{+\,0.020} \ 13.5 \begin{array}{c} {}^{+\,0.3}_{0} \end{array}$

 $5 \ {}^{+\, 0.050}_{+\, 0.020} \ 16.0 \ {}^{+\, 0.3}_{0}$

 $5 \begin{array}{c} +0.050 \\ +0.020 \end{array}$ 17.0 $\begin{array}{c} +0.3 \\ 0 \end{array}$

 $5 \begin{array}{c} {}^{+\,0.050}_{+\,0.020} \hspace{0.1cm} 18.0 \begin{array}{c} {}^{+\,0.3}_{0} \end{array}$

 $5 \ {}^{+\, 0.050}_{+\, 0.020} \ 20.0 \ {}^{+\, 0.3}_{0}$

 $5 \begin{array}{c} +0.050 \\ +0.020 \end{array}$ 21.0 $\begin{array}{c} +0.3 \\ 0 \end{array}$

7 +0.061 25.0 +0.3

 $7 \begin{array}{c} {}^{+0.061}_{+0.025} \hspace{0.1cm} \textbf{28.0} \begin{array}{c} {}^{+0.3}_{0} \end{array}$

7 ^{+0.061}_{+0.025} 33.0 ^{+0.3}₀

32 32 $^{+0.025}_{0}$ 10 $^{+0.061}_{+0.025}$ 35.5 $^{+0.3}_{0}$ 2-M8 32H 32 $^{+0.025}_{0}$

19.0 +0.3

20 20 $^{+0.021}_{0}$ 5 $^{+0.050}_{+0.020}$ 22.0 $^{+0.3}_{0}$ 2-M4 20H 20 $^{+0.021}_{0}$

Bore

[d1 • d2]

Tolerance

H7, H8

8 + 0.022

9 ^{+0.022}

10 + 0.022

 $14 \ {}^{+ \ 0.018}_{0}$

15 ^{+ 0.018}

18 + 0.018

22 + 0.021

25 ^{+ 0.021}

30 30 ^{+ 0.021}

 $16 \ 16 \ {}^{+ 0.018}_{0}$

+ 0.018

+ 0.018

+ 0.021

11 11 + 0.018

diameter

8

9

10

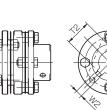
12 12

14

15

17 17

18


19 19

22

25

35

40

Bore

[d1 • d2]

Tolerance

H7, H8

8 + 0.022

9 ^{+ 0.022}

+ 0.022

+ 0.018

+ 0.018

+ 0.018

+ 0.021

Keyway width

[W1 • W2]

Tolerance

H9

3 ^{+ 0.025}

3 ^{+0.025}

3 ^{+ 0.025}

4 + 0.030

4 + 0.030

5 ^{+ 0.030}

5 + 0.030

5 ^{+0.030}

5 + 0.030

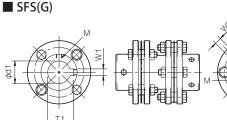
 $6 \, {}^{+\, 0.030}_{0}$

6 + 0.030

6 ^{+ 0.030}

6 + 0.030

8 + 0.036


8 + 0.036

8 + 0.036

10 + 0.036

8

0.036

Set

screw hole

[M]

2-M4 8P

2-M4 9P

2-M4 10P

2-M4 14P

2-M4 17P

2-M5 18P 18

2-M5

2-M5

2-M6

2-M6

2-M6

2-M8

40J 40 $^{+0.025}_{0}$ 12 $^{\pm0.0215}_{-0.021}$ 43.3 $^{+0.3}_{-0.01}$ 2-M8 40P 40 $^{+0.025}_{-0.018}$ 12 $^{-0.018}_{-0.061}$

 8 ± 0.0180 31.3 $^{+0.3}_{-0.3}$ 2-M6 28P 28 $^{+0.021}_{-0.31}$

 $6 \ \pm 0.0150 \ 22.8 \ {}^{+ 0.3}_{0} \ 2-M5 \ 20P \ 20 \ {}^{+ 0.021}_{0}$

 $4 \ \pm 0.0150 \ 12.8 \ {}^{+ 0.3}_{0} \ 2 \text{-} M4 \ 11P \ 11 \ {}^{+ 0.018}_{0}$

5 ±0.0150 18.3 +0.3 2-M4 16P 16 +0.018

+0.3 2-M4 12P 12 +0.018

+ 0.3 2-M4

+ 0.3

Bore

[d1 • d2]

Tolerance

H7, H8

8 + 0.022

9 ^{+0.022}

10 + 0.022

14 + 0.018

+ 0.018

+ 0.018

+ 0.021

+ 0.021

+ 0.021

+ 0.021

15P 15 + 0.018

19P 19

22P 22

24P 24

25P 25

30P 30 + 0.021

32P 32 + 0.025

35P 35 + 0.025

17

Keyway width

[W1 • W2]

Tolerance

P9

3 -0.006

3 - 0.006

3 -0.006

4 - 0.012 - 0.042

 $4 \begin{array}{c} -0.012 \\ -0.042 \end{array}$ 13.8

 $5 \begin{array}{c} - 0.012 \\ - 0.042 \end{array}$

5 ^{-0.012} _{-0.042} 17.3

5 = 0.012

5 - 0.012

6 - 0.012

6 = 0.012

6 - 0.012

8 -0.051 27.3 +0.3 2-M6

8 -0.015 28.3 +0.3 2-M6

10 = 0.015

 $10 = 0.015 \\ - 0.051$

12 - 0.018 - 0.061

8 -0.015 31.3

 $8 \begin{array}{c} -0.015 \\ -0.051 \end{array}$ 33.3 $\begin{array}{c} +0.3 \\ 0 \end{array}$

 $10 \begin{array}{c} -0.015 \\ -0.051 \end{array} \begin{array}{c} 41.3 \begin{array}{c} +0.3 \\ 0 \end{array}$

Keyway

height [T1 • T2]

9.4 + 0.3

 $3 \ \pm 0.0125 \ 10.4 \ {}^{+ \ 0.3}_{0}$

 $3 \pm 0.0125 11.4 + 0.3$

 $5 \ \pm 0.0150 \ 16.3 \ {}^{+ \ 0.3}_{0}$

4 ± 0.0150 13.8

5 ± 0.0150 17.3

5 ± 0.0150 19.3

 $6 \pm 0.0150 \begin{array}{c} 20.8 \\ 0 \end{array} + \begin{array}{c} 0.3 \\ 0 \end{array}$

 $6 \ \pm 0.0150 \ 21.8 \ {}^{+ \ 0.3}_{0}$

 $6 \pm 0.0150 24.8 + 0.3$

 $8 \ \pm 0.0180 \ 27.3 \ {}^{+ \ 0.3}_{0}$

 $8 \ \pm 0.0180 \ 28.3 \ {}^{+ \ 0.3}_{0}$

 $8 \pm 0.0180 33.3 + 0.3$

32J 32 $^{+0.025}_{0}$ 10 $^{\pm 0.0180}$ 35.3 $^{+0.3}_{0}$ 2-M8

35J 35 $^{+0.025}_{0}$ 10 $^{\pm0.0180}$ 38.3 $^{+0.3}_{0}$

Keyway width

[W1 • W2]

Tolerance

JS9

3 ± 0.0125

Unit [mm]

Set

screw hole

[M]

_

2-M4

2-M4

2-M4

2-M4

2-M4

2-M4

2-M4

2-M5

2-M5

2-M5

2-M6

2-M6

2-M8

2-M8

2-M8

2-M8

2-M8

2-M10

Keyway

height [T1 • T2]

9.4 + 0.3

10.4

11.4

16.3

19.3 +0.3

20.8 + 0.3 2-M5

21.8

24.8 + 0.3

35.3 + 0.3

38.3 + 0.3

43.3 + 0.3 0

45.3 + 0.3

48.8 + 0.3

 $6 \begin{array}{c} -0.012 \\ -0.042 \end{array}$ 22.8 $\begin{array}{c} +0.3 \\ 0 \end{array}$

12.8 + 0.3

18.3 + 0.3

+ 0.3

+ 0.3 2-M4

+ 0.3 2-M4

+ 0.3

SERIES

	Metal Disc Couplings SERVOFLEX
Metal Couplings	High-rigidity Couplings SERVORIGID
	Metal Slit Couplings HELI-CAL
	Metal Coil Spring Couplings BAUMANNFLEX
	Pin Bushing Couplings PARAFLEX
	Link Couplings SCHMIDT
	Dual Rubber Couplings STEPFLEX
Rubber a	Jaw Couplings MIKI PULLEY STARFLEX
and Plastic Couplings	Jaw Couplings SPRFLEX
	Plastic Bellows Couplings BELLOWFLEX
	Rubber and Plastic Couplings

Couplings
CENTAFLEX

SFH

MODE	LS	
SFC		
SFS		
SFF		
SFM		

Nominal bc diameter	Bore diameter [d1 • d2]	Keyway width [W1 • W2]	Keyway height [T1 • T2]	Set screv hole [M]
bore ter	Tolerance G7, F7	Tolerance H9	-	-
14N	$14 \ ^{+ \ 0.024}_{+ \ 0.006}$	5 ^{+ 0.030}	16.3 ^{+ 0.3}	2-M4
19N	$19 \ ^{+ \ 0.028}_{+ \ 0.007}$	6 ^{+0.030}	21.8 + 0.3 0	2-M5
24N	$24 \ ^{+ \ 0.028}_{+ \ 0.007}$	$8 ^{+0.036}_{0}$	27.3 + 0.3	2-M6
28N	$28 \ ^{+ \ 0.028}_{+ \ 0.007}$	8 + 0.036	31.3 ^{+ 0.3}	2-M6
38N	$38 \ {}^{+ 0.050}_{+ 0.025}$	$10 {}^{+ 0.036}_{0}$	$41.3 \ {}^{+ 0.3}_{0}$	2-M8
42N	$42 \ ^{+ \ 0.050}_{+ \ 0.025}$	$12 {}^{+ 0.043}_{0}$	45.3 ^{+ 0.3}	2-M8
48N	$48 \ ^{+ \ 0.050}_{+ \ 0.025}$	$14 {}^{+ 0.043}_{0}$	51.8 + 0.3 0	2-M10
55N	$55 \ ^{+ \ 0.060}_{+ \ 0.030}$	$16 {}^{+ 0.043}_{0}$	59.3 ^{+ 0.3}	2-M10
60N	$60 \ ^{+ \ 0.060}_{+ \ 0.030}$	$18 {}^{+ 0.043}_{0}$	64.4 ^{+ 0.3}	2-M10

Set screw position

Model	Distance from edge [mm]
SFS-05	7
SFS-06	9
SFS-08	10
SFS-09	10
SFS-10	12
SFS-12	12
SFS-14	15

NOTE

Models compliant with the old JIS standard (class 2) JIS B 1301 1959 Models compliant with the new JIS standard (H9) JIS B 1301 1996 Models compliant with the new JIS standard (JS9) JIS B 1301 1996 Models compliant with the new JIS standard (P3) JIS B 1301 1996

DOL

lete

9J

12J 12 + 0.018

15J 15

17J 17

19J 19

Bore

[d1 • d2]

Tolerance

H7, H8

8 + 0.022

9 ^{+0.022}

 $10 \begin{array}{c} + 0.022 \\ 0 \end{array}$

 $14 \, {}^{+ \, 0.018}_{0}$

16J 16 $^{+0.018}_{0}$

18J 18 + 0.018 0

20J 20 + 0.021

22J 22 +0.021 0

24J 24 + 0.021

25J 25 + 0.021

30J 30 + 0.021

2-M8 42H 42 +0.025 12 +0.043 45.3 +0.3 0 2-M8 42J 42 +0.025 12 ±0.0215 45.3 +0.3 2-M8 42P 42 +0.025

48 48 + 025 12 + 003 51.5 + 03 2-M10 48P 48 + 0.025 14 + 0.043 51.8 + 03 2-M10 48J 48 + 0.025 14 ± 0.0215 51.8 + 03 2-M10 48P 48 + 0.025 14 - 0.016 51.8 + 03 2-M10

50 50 $\frac{1}{902}$ 52 $\frac{1}{9032}$ 535 $\frac{1}{903}$ 535 $\frac{1}{903}$ 53.5 $\frac{1}{903}$ 53.6 $\frac{1}{903}$ 53.8 $\frac{1}{903}$ 53.8 $\frac{1}{903}$ 53.8 $\frac{1}{903}$ 54.8 $\frac{1}{903}$ 54.8 $\frac{1}{903}$ 54.8 $\frac{1}{903}$ 54.9 $\frac{1}{9004}$ 54.9 $\frac{1}{9004}$ 54.9 $\frac{1}{9004}$ 54.8 $\frac{1}{903}$ 54.9 $\frac{1}{9004}$ 54.9 $\frac{$

 $2-M8 \quad 45H \quad 45 \quad {}^{+0.025}_{0} \quad 14 \quad {}^{+0.043}_{0} \quad 48.8 \quad {}^{+0.3}_{0} \quad 2-M10 \quad 45J \quad 45 \quad {}^{+0.025}_{0} \quad 14 \quad {}^{+0.0215}_{-0.0215} \quad 48.8 \quad {}^{+0.3}_{0} \quad 2-M10 \quad 45P \quad 45 \quad {}^{+0.025}_{0} \quad 14 \quad {}^{-0.018}_{-0.061} \quad -6.016 \quad {}^{+0.025}_{-0.061} \quad -6.016 \quad -6.$

+ 0.018

+ 0.018

+ 0.021

Set

screw

hole

[M]

2-M4 8J

2-M4 10J

2-M4 14J

2-M4

2-M5

2-M5

2-M6

2-M6

2-M8

2-M8

31.3 ^{+0.3} 0 2-M6 28J 28 ^{+0.021}

12.8 $^{+0.3}_{0}$ 2-M4 11J 11 $^{+0.018}_{0}$

Keyway

[T1 • T2]

9.4 + 0.3

11.4 + 0.3

13.8

16.3

17.3 ^{+0.3} 2-M4

19.3

20.8 + 0.3 2-M5

21.8

27.3 ^{+ 0.3} 0 2-M6

24.8 + 0.3

28.3 + 0.3 0

33.3 + 0.3

10 ^{+ 0.036} 0 35.3 ^{+ 0.3} 0 2-M8

38.3 ^{+ 0.3}

 $38 \ 38 \ {}^{+0.025}_{-0.05} \ 10 \ {}^{+0.025}_{-0.016} \ 41.5 \ {}^{+0.3}_{-0.2} \ 2-M8 \ 38 \ {}^{+0.025}_{-0.016} \ 10 \ {}^{+0.036}_{-0.016} \ 41.3 \ {}^{+0.3}_{-0.2} \ 2-M8 \ 38 \ {}^{+0.025}_{-0.016} \ 41.3 \ {}^{+0.3}_{-0.2} \ 2-M8 \ 38 \ {}^{+0.025}_{-0.016} \ 41.3 \ {}^{+0.3}_{-0.2} \ 2-M8 \ 38 \ {}^{+0.025}_{-0.016} \ 41.3 \ {}^{+0.3}_{-0.2} \ 2-M8 \ 38 \ {}^{+0.025}_{-0.016} \ 41.3 \ {}^{+0.3}_{-0.2} \ 2-M8 \ {}^{+0.025}_{-0.016} \ 41.3 \ {}^{+0.025}_{-0.016} \ 41.3 \ {}^{+0.3}_{-0.2} \ 2-M8 \ {}^{+0.025}_{-0.016} \ 41.3 \ {}^{+0.3}_{-0.2} \ 2-M8 \ {}^{+0.025}_{-0.016} \ 41.3 \ {}^{+0.016}_{-0.016} \ 41.3 \ {}^{+0.016}_{-0.016} \ 41.3 \ {}^{+0.016}_{-0.016} \ 41.3 \ {}^{+0.016}_{-0.016} \ 41.3 \ {}^{+0.016}_{-0.016} \ 41.3 \ {}^{+0.016}_{-0.016} \ 41.3 \ {}^{+0.016}_{-0.016} \ 41.3 \ {}^{+0.016}_{-0.016} \ 41.3 \ {}^{+0.016}_{-0.016} \ 41.3 \ {}^{+0.016}_{-0.016} \ 41.3 \ {}^{+0.016}_{-0.016} \ 41.3 \ {}^{+0.016}_{-0.016} \ 41.3 \ {}^{+0.016}_{-0.016} \ 41.3 \ {}^{+0.016}_{-0.016} \ 41.3 \ {}^{+0.016}_{-0.016} \ 41.3 \ {}^{+0.016}_{-0.016} \ 41.3 \ {}^{+0.016}_{-0.016} \ 41.$

 $12 \begin{array}{c} +0.043 \\ 0 \end{array} \begin{array}{c} 43.3 \begin{array}{c} +0.3 \\ 0 \end{array}$

10.4 ^{+ 0.3} 2-M4

+ 0.3 2-M4

+ 0.3

+ 0.3

+ 0.3

22.8 ^{+ 0.3} ₀ 2-M5

18.3 ^{+ 0.3} ₀ 2-M4

Positions of set screws and keyways are not on the same plane.

Set screws are included with the product.

Positioning precision for keyway milling is determined by sight.
Contact Miki Pulley when the keyway requires a positioning precision for a particular flange hub.

• Consult the technical documentation at the end of this volume for standard dimensions for bore drilling other than those given here.

SFS Models

Items Checked for Design Purposes

Special Items to Take Note of

You should note the following to prevent any problems.

(1) Always be careful of parallel, angular, and axial misalignment.

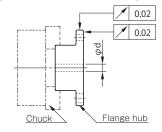
(2) Always tighten bolts with the specified torque.

Precautions for Handling

SFS models are delivered as components. Select whether to assemble by mounting flange hubs on each shaft and coupling shafts in both directions by mounting the element last, while centering, or to assemble by completing couplings first and then inserting them onto the shafts.

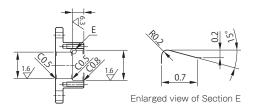
When using the assembly method that completes couplings first, take extra precautions when handling couplings. Subjecting assembled couplings to strong shocks may affect mounting accuracy and cause the parts to break during use.

- (1) Couplings are designed for use within an operating temperature range of -30° C to 120°C. Although the couplings are designed to be waterproof and oilproof, do not subject them to excessive amounts of water and oil as it may cause part deterioration.
- (2) Handle the element with care as it is made of a thin stainless steel metal disc, also making sure to be careful so as not to injure yourself.
- (3) For frictional coupling types, do not tighten up pressure bolts until after inserting the mounting shaft.

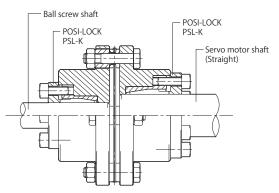

(4) Mounting shaft to frictional coupling types is assumed to be a round shaft.

Centering and Finishing When Drilling Bores in Flange Hubs

Keep the following in mind when processing bore diameters in pilotbore products.

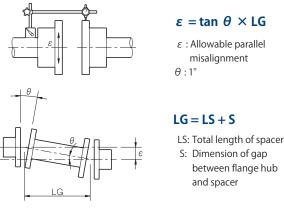

Centering

After adjusting the chuck so that runout of each flange hub is no more than the precision of the figure below, finish the inner diameter, guided by the figure below.


Taper ring (RfN8006) specifications

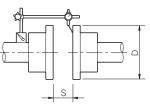
Finish as shown in the figure below if you are processing for a connection by means of a taper ring (RfN8006).

Finishing/mounting example


The example shows a pilot-bore type of flange hub processed for a POSI-LOCK PSL-K, a shaft lock made by Miki Pulley, and connected to a straight shaft.

Centering

Parallel misalignment (ε)


Lock the dial gauge in place on one shaft and then measure the runout of the paired flange hub's outer periphery while rotating that shaft. Since couplings on which the elements (discs) are a set SFS(S) types do not allow parallel misalignment, get as close to zero as possible. For couplings that allow the entire length to be freely set SFS(G) types, use the following formula to calculate allowable parallel misalignment.

Angular deflection(θ)

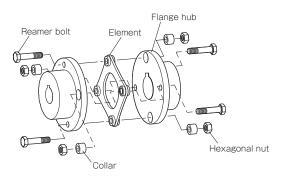
Lock the dial gauge in place on one shaft and then measure the runout of the end surface near the paired flange hub's outer periphery while rotating that shaft.

Adjust runout B so that $\theta \leq 1^{\circ}$ in the following formula.

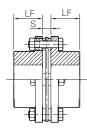
$\mathbf{B} = \mathbf{D} \times \mathbf{tan} \ \boldsymbol{\theta}$

- B: Runout
- D: Flange hub outer diameter

$\theta:1^{\circ}$


Axial displacement (S)

In addition, restrict the dimension between flange hub faces (S in the diagram) within the allowable error range for axial displacement with respect to a reference value. Note that the tolerance values were calculated based on the assumption that both the level of parallel misalignment and angular deflection are zero. Adjust to keep this value as low as possible.

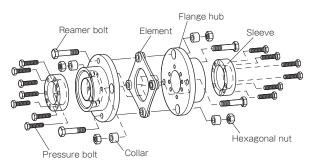

*On the SFS(5), this is the dimension of the gap between two flange hubs. On the SFS(W/G), dimension S is the gap between the flange hub and the spacer.

Mounting

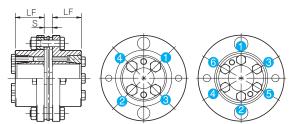
This assembly method mounts a flange hub on each shaft of the SFS models and couples shafts in both directions by mounting the element last, while centering.

- (1) Remove any rust, dust, oil residue, etc. from inner diameter surfaces of the shaft and flange hubs. In particular, never allow oil or grease containing antifriction or other agent (molybdenum-, silicon-, or fluorine-based), which would dramatically affect the friction coefficient, to contact the surface.
- (2) Insert each shaft far enough into the flange hub that the paired mounting shaft touches the shaft along the entire length of the flange hub (LF dimension), as shown in the diagram below, and does not interfere with the elements, spacers or the other shaft.

- (3) Mount the other flange hub on the paired mounting shaft as described in steps (1) and (2).
- (4) Keep the width of the dimension between flange hub faces (S dimension in the diagram) within the allowable error range for axial misalignment with respect to the reference value. Note that the tolerance values were calculated based on the assumption that both the level of parallel misalignment and angular deflection are zero. Adjust to keep this value as low as possible.


Coupling size	05	06	08	09	10	12	14
S [mm]	5	6	6	8	10	11	12

- (5) Insert the element into the gap between the two flange hubs, and then mount it with the reamer bolt for locking the element in place. Check that the element is not deformed. If it is, it may be under an axial force or there may be insufficient lubrication between the collar, bolt, and disc, so adjust to bring it to normal. The situation may be improved by applying a small amount of machine oil to the bearing surface of the reamer bolt. However, never use any oil or grease containing antifriction or other agent (molybdenum-, silicon-, or fluorine-based) which would dramatically affect the friction coefficient.
- (6) Use a calibrated torque wrench to tighten all the reamer bolts to the tightening torques of the table below.


Coupling size	05	06	08	09	10	12	14
Reamer bolt size	M5	M6	M6	M8	M8	M10	M12
Tightening torque [N•m] Black oxide finish (standard) specification	8	14	14	34	34	68	118
Tightening torque [N•m] Electroless nickel plating [° C] specification	6	11	11	26	26	51	90

Mounting (Frictional Coupling Hub Types)

This assembly method mounts a flange hub on each shaft of the SFS (frictional coupling hub) type and couples both shafts by mounting the element last while centering.

- (1) Loosen the pressure bolts of the flange hubs, check that the sleeve can move freely, and then remove any rust, dust, oil residue, etc. from the inner diameter surfaces of the shaft and flange hubs. In particular, never allow oil or grease containing antifriction or other agent (molybdenum-, silicon-, or fluorine-based), which would dramatically affect the friction coefficient, to contact the surface.
- (2) Insert each shaft far enough into the flange hub that the paired mounting shaft touches the shaft along the entire length of the flange hub (LF dimension), as shown in the diagram below, and does not interfere with the elements, spacers or the other shaft. Then, holding them in place, tighten the pressure bolts evenly, a little at a time on the diagonal, following the tightening sequence shown in the figure below.

- (3) Mount the other flange hub on the paired mounting shaft as described in steps (1) and (2).
- (4) Keep the width of the dimension between flange hub faces (S dimension in the diagram) within the allowable error range for axial misalignment with respect to the reference value. Note that the tolerance values were calculated based on the assumption that both the level of parallel misalignment and angular deflection are zero. Adjust to keep this value as low as possible.

Coupling size	06	08	09	10	12	14
S [mm]	6	6	8	10	11	12

- (5) Insert the element into the gap between the two flange hubs, and then mount it with the reamer bolt for locking the element in place. Check that the element is not deformed. If it is, it may be under an axial force or there may be insufficient lubrication between the collar, bolt, and disc, so adjust to bring it to normal. The situation may be improved by applying a small amount of machine oil to the bearing surface of the reamer bolt. However, never use any oil or grease containing antifriction or other agent (molybdenum-, silicon-, or fluorine-based) which would dramatically affect the friction coefficient.
- (6) Use a calibrated torque wrench to tighten all the reamer and pressure bolts to the tightening torques of the table below.

Coupling size	06	08	09	10	12	14
Reamer bolt size	M6	M6	M8	M8	M10	M12
Tightening torque [N·m]	14	14	34	34	68	118
Pressure bolt size	M5	M6	M6	M6	M8	M8
Tightening torque [N·m]	8	14	14	14	34	34

(7) To protect against initial loosening of the pressure bolts, we recommend operating for a set period of time and then retightening to the appropriate tightening torque.

COUPLINGS

ETP BUSHINGS
ELECTROMAGNETIC
CLUTCHES & BRAKES
SPEED CHANGERS
& REDUCERS
INVERTERS
LINEAR SHAFT DRIVES
TORQUE LIMITERS
ROSTA

SERIES

JER	VIED
	Metal Disc Couplings SERVOFLEX
	High-rigidity Couplings SERVORIGID
Metal Co	Metal Slit Couplings HELI-CAL
ouplings	Metal Coil Spring Couplings BAUMANNFLEX
	Pin Bushing Couplings PARAFLEX
	Link Couplings SCHMIDT
	Dual Rubber Couplings STEPFLEX
Rubber ai	Jaw Couplings MIKI PULLEY STARFLEX
nd Plastic (Jaw Couplings SPRFLEX
Couplings	Plastic Bellows Couplings BELLOWFLEX

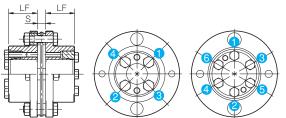
Rubber and Plastic
Couplings CENTAELEX
CENTAFLEA

MODELS

SFC	 	 	 	
SFS				
SFF	 	 	 	
SFM	 	 	 	
SFH	 	 	 	

SFS Models

Items Checked for Design Purposes


Mounting (When Mounted After Coupling Is Completed)

This assembly method first completes the coupling and then inserts it onto the shaft.

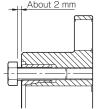
(1) Remove any rust, dust, oil or the like from the inner diameter surfaces of the shaft and flange hubs. In particular, never allow oil or grease containing antifriction or other agent (molybdenum-, silicon-, or fluorine-based), which would dramatically affect the friction coefficient, to contact the surface.

For types that use frictional coupling, loosen the flange hub's pressure bolt and check that the sleeve can move freely.

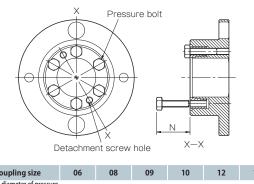
- (2) Be careful when inserting the couplings into the shaft so as not to apply excessive force of compression or tensile force to the element. Be particularly careful not to mistakenly apply excessive compression force when inserting couplings into the paired shaft after mounting on one shaft.
- (3) For frictional coupling types, with the pressure bolts loosened, make sure that couplings move gently in the axial and rotational directions. Readjust the centering of the two shafts if the couplings fail to move smoothly enough.
- (4) Insert each shaft far enough into the flange hub that the paired mounting shaft touches the shaft along the entire length of the flange hub (LF dimension), as shown in the diagram below. Then position it so that it does not interfere with the elements, spacers or the other shaft and lock it in place. For frictional coupling types, tighten the pressure bolts evenly, a little at a time on the diagonal, following the tightening sequence shown in the figure below.

(5) Keep the width of the dimension between flange hub faces (S dimension in the diagram) within the allowable error range for axial misalignment with respect to the reference value. Note that the tolerance values were calculated based on the assumption that both the level of parallel misalignment and angular deflection are zero. Adjust to keep this value as low as possible.

Coupling size	05	06	08	09	10	12	14
S [mm]	5	6	6	8	10	11	12

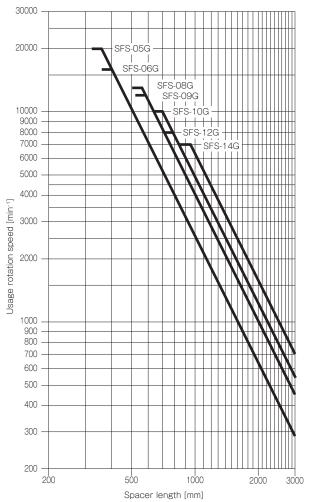

(6) Use a calibrated torque wrench to tighten all the pressure bolts to the appropriate tightening torques of the table below.

Coupling size	06	08	09	10	12	14
Pressure bolt size	M5	M6	M6	M6	M8	M8
Tightening torque [N·m]	8	14	14	14	34	34


(7) To protect against initial loosening of the pressure bolts, we recommend operating for a set period of time and then retightening to the appropriate tightening torque.

Removal

- (1) Check to confirm that there is no torque or axial direction load being applied to the coupling. There may be cases where a torque is applied to the coupling, particularly when the safety brake is being used. Make sure to verify that this is not occurring before removing parts.
- (2) Loosen all the pressure bolts placing pressure on the sleeve until the gap between bearing seat and sleeve is about 2 mm.
 - In the case of a tapered coupling system, the mechanism will be self-locking, so the coupling between flange hub and shaft cannot be released. (Note that in some cases, a coupling can be released.) For that reason, when designing couplings, a space must be installed for inserting a detachment screw. If there is no space in the axial direction, consult Miki Pulley.


(3) Pull out two of the pressure bolts loosened in step (2), insert them into detachment screw holes at two locations on the sleeve, and tighten them alternately, a little at a time. The coupling between the flange hub and shaft will be released.

Coupling size	06	08	09	10	12	14
Nominal diameter of pressure bolt × Length	M5 imes 20	M6 imes 24	M6 imes 24	M6 imes 24	M8 imes 25	$M8 \times 25$
Recommended N dimension [mm]	26	30	30	30	31.5	31.5
Recommended N dimension						

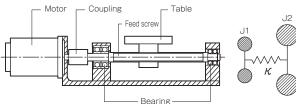
Limit Rotation Speed

For SFS(G) long spacer types, the speed at which the coupling can be used will vary with the length of spacer selected. Use the following table to confirm that the speed you will use is at or below the limit rotation speed. When a max. rotation speed is set for a specific type, that speed is the upper limit.

COUPLINGS

Points to Consider Regarding the Feed Screw System

In feed screw systems using a stepper motor or servo motor, the pulsation natural frequency of the stepper motor and the torsional natural frequency of the system as a whole may cause the system to resonate, or the gain adjustment of the servo motor may cause the system to oscillate.


If resonance occurs, the resonant rotation speed must be skipped, or if oscillation occurs, adjustment will need to be made such as by using the filter function or other electrical control system to resolve the issue.

In either instance, to handle resonance and oscillation, it will be necessary to take into account the torsional natural frequency for the system overall during the design stage, including the torsional stiffness for the coupling and feed screw section and the moment of inertia and other characteristics. Please contact Miki Pulley with any questions regarding these issues.

How to Find the Natural Frequency of a Feed Screw System

Select a coupling based on the nominal and maximum torque of the stepper motor or servo motor.

Next, find the overall natural frequency, Nf, from the torsional stiffness of the coupling and feed screw, κ , the moment of inertia of driving side, J1, and the moment of inertia of driven side, J2, for the feed screw system shown below.

Natural frequency of overall feed screw system Nf [Hz]

$$Nf = \frac{1}{2\pi} \sqrt{\kappa \left(\frac{1}{J1} + \frac{1}{J2}\right)}$$

κ: Torsional stiffness of the coupling and feed screw [N-m/rad] J1: Moment of inertia of driving side [kg-m²] J2: Moment of inertia of driven side [kg-m²]

Torsional spring constant of coupling and feed screw κ [N·m/rad]

 κ c: Torsional spring constant of coupling [N·m/rad] κ b: Torsional spring constant of feed screw [N·m/rad]

Jm: Moment of inertia of servomotor [kg·m²]

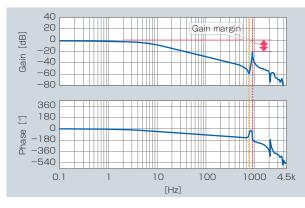
Jc: Moment of inertia of coupling [kg·m²]

Driving moment of inertia J1 [kg·m²]

```
J1 = Jm + \frac{Jc}{2}
```

Driven moment of inertia J2 [kg·m²]

$$J2=Jb+Jt+\frac{Jc}{2}$$


Jb: Moment of inertia of feedscrew [kg·m²] Jt: Moment of inertia of table [kg·m²] Jc: Moment of inertia of coupling [kg·m²]

Moment of inertia of table Jt [kg·m²]

$$Jt = \frac{M \times P^2}{4\pi^2}$$

M: Mass of table [kg] P: Lead of feed screw [m]

Since it is easier for oscillation to occur when the gain margin with natural frequency is 10 dB or lower, it is necessary for the natural frequency to be set high with a therefore higher gain margin at the design stage, or to adjust the natural frequency using the servomotor's electric tuning function (filter function) so as to avoid oscillation.

Selection Procedures

(1) Find the torque, Ta, applied to the coupling using the output capacity, P, of the driver and the usage rotation speed, n.

$$[a [N \cdot m] = 9550 \times \frac{P [kW]}{n[min^{-1}]}$$

(2) Determine the factor κ from the load properties, and find the corrected torque, Td, applied to the coupling.

$Td = Ta \times K$ (Refer to the table below for values)

	Constant	Vibrations: Small	Vibrations: Medium	Vibrations: Large
Load properties	\square	\bigwedge	fron	Mr
К	1.0	1.25	1.75	2.25

For servo motor drive, multiply the maximum torque, Ts, by the usage factor $K=1.2 \mbox{ to } 1.5.$

$Td = Ts \times (1.2 \text{ to } 1.5)$

(3) Set the size so that the rated coupling torque, Tn, is higher than the corrected torque, Td.

Tn ≧ Td

- (4) The rated torque of the coupling may be limited by the bore diameter of the coupling. See the table showing the bore diameters that limit rated torque.
- (5) Check that the mount shaft is no larger than the maximum bore diameter of the coupling.

Contact Miki Pulley for assistance with any device experiencing extreme periodic vibrations.

ETP BUSHINGS ELECTROMAGNETIC CLUTCHES & BRAKES SPEED CHANGERS & REDUCERS INVERTERS LINEAR SHAFT DRIVES TORQUE LIMITERS

NUSIA

SERIES

	Metal Disc Couplings SERVOFLEX
	High-rigidity Couplings SERVORIGID
Metal Co	Metal Slit Couplings HELI-CAL
ouplings	Metal Coil Spring Couplings BAUMANNFLEX
	Pin Bushing Couplings PARAFLEX
	Link Couplings SCHMIDT
	Dual Rubber Couplings STEPFLEX
Rubber ar	Jaw Couplings MIKI PULLEY STARFLEX
nd Plastic (Jaw Couplings SPRFLEX
Couplings	Plastic Bellows Couplings BELLOWFLEX
	Rubber and Plastic Couplings CENTAFLEX
мс	DELS
SF	2
SF	5

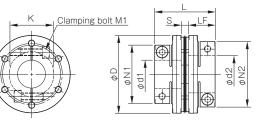
ΜΙΚΙ	PULLEY	059

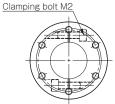
SFF

SEM

SFH

SFF(SS) Types Single Element/Clamping

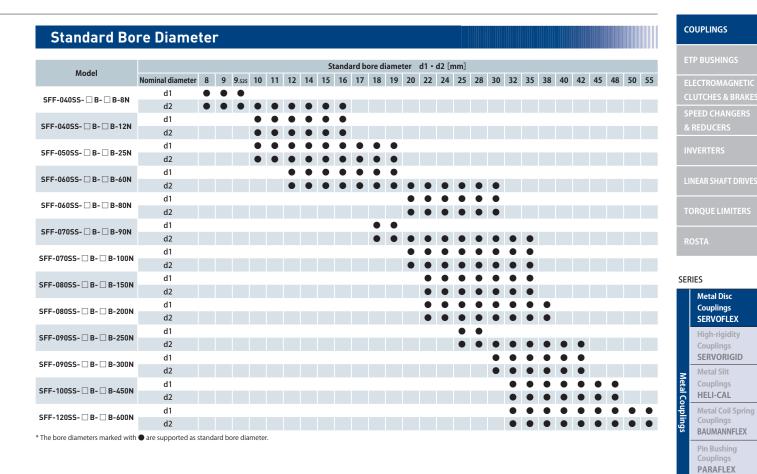

Specifications


			Misalignment		Max. rotation	Torsional	Axial	Moment of	
Model	Rated torque [N•m]	Parallel [mm]	Angular [°]	Axial [mm]	speed [min ⁻¹]	stiffness [N•m/rad]	stiffness [N/mm]	inertia [kg•m²]	Mass [kg]
SFF-040SS- 🗌 B- 🗌 B-8N	8	0.02	1	± 0.2	18000	15000	174	0.03 × 10 ⁻³	0.17
SFF-040SS- 🗆 B- 🗆 B-12N	12	0.02	1	± 0.2	18000	15000	174	0.03 × 10 ⁻³	0.17
SFF-050SS- 🗆 B- 🗆 B-25N	25	0.02	1	± 0.3	18000	32000	145	0.10 × 10 ⁻³	0.36
SFF-060SS- 🗆 B- 🗆 B-60N	60	0.02	1	± 0.3	18000	104000	399	0.22 × 10 ⁻³	0.52
SFF-060SS- 🗌 B- 🗌 B-80N	80	0.02	1	± 0.3	18000	104000	399	0.23 × 10 ⁻³	0.49
SFF-070SS- 🗌 B- 🗌 B-90N	90	0.02	1	± 0.5	18000	240000	484	0.40 × 10 ⁻³	0.72
SFF-070SS- 🗆 B- 🗆 B-100N	100	0.02	1	± 0.5	18000	240000	484	0.42 × 10 ⁻³	0.67
SFF-080SS- 🗆 B- 🗆 B-150N	150	0.02	1	± 0.5	17000	120000	96	0.79 × 10 ⁻³	1.04
SFF-080SS- 🗆 B- 🗆 B-200N	200	0.02	1	± 0.5	17000	310000	546	1.25 × 10 ⁻³	1.40
SFF-090SS- 🗆 B- 🗆 B-250N	250	0.02	1	± 0.6	15000	520000	321	1.54 × 10 ⁻³	1.62
SFF-090SS- 🗆 B- 🗆 B-300N	300	0.02	1	± 0.6	15000	520000	321	1.58 × 10 ⁻³	1.53
SFF-100SS- 🗆 B- 🗆 B-450N	450	0.02	1	± 0.65	13000	740000	540	3.27 × 10 ⁻³	2.53
SFF-120SS- 🗆 B- 🗆 B-600N	600	0.02	1	± 0.8	11000	970000	360	6.90 × 10 ⁻³	3.78

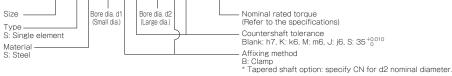
* Max. rotation speed does not take into account dynamic balance.

* Torsional stiffness values given are measured values for the element alone. * The moment of inertia and mass are measured for the maximum bore diameter.

Dimensions



Model	d1 [mm]	d2 [mm]	D [mm]	L [mm]	N1 • N 2 [mm]	LF [mm]	S [mm]	K [mm]	M 1 • M2 Qty - Nominal dia.	M1 • M2 Tightening torque [N • m]
SFF-040SS- 🗌 B- 🗌 B-8N	8 • 9 • 9. ₅₂₅	8 • 9 • 9.525 • 10 • 11 • 12 • 14 • 15 • 16	38	38.9	33	17.5	3.9	17	2-M4	3.4
SFF-040SS- 🗆 B- 🗆 B-12N	10 • 11 • 12 • 14 • 15 • 16	10 • 11 • 12 • 14 • 15 • 16	38	38.9	33	17.5	3.9	17	2-M4	3.4
SFF-050SS- 🗆 B- 🗆 B-25N	10 • 11 • 12 • 14 • 15 • 16 • 17 • 18 • 19	10 • 11 • 12 • 14 • 15 • 16 • 17 • 18 • 19	48	48.4	42	21.5	5.4	20	2-M5	7
	12 • 14 • 15 • 16 • 17 • 18 • 19	$12 \cdot 14 \cdot 15 \cdot 16 \cdot 17 \cdot 18 \cdot 19 \cdot 20 \cdot 22$			44				2-M6	14
SFF-060SS- 🗆 B- 🗆 B-60N	—	24 · 25 · 28	58	53.4	48	24	5.4	32	2-M5	7
	-	30			52				2 1015	1
	20 · 22	20 · 22			44				2-M6	14
SFF-060SS- 🗆 B- 🗆 B-80N	24 • 25 • 28	24 • 25 • 28	58	53.4	48	24	5.4	32	2-M5	7
	30	30			52				2 1115	,
SFF-070SS- 🗆 B- 🗆 B-90N	18 • 19	18 • 19 • 20 • 22 • 24 • 25	68	55.9	47	25	5.9	38	2-M6	14
	-	28 • 30 • 32 • 35	00	5515	56	25	515	50	2	
SFF-070SS- 🗆 B- 🗆 B-100N	20 • 22 • 24 • 25	20 • 22 • 24 • 25	68	55.9	47	25	5.9	38	2-M6	14
	28 • 30 • 32 • 35	28 • 30 • 32 • 35			56					
SFF-080SS- 🗆 B- 🗆 B-150N	22 • 24 • 25	22 • 24 • 25	78	68.3	53	30	8.3	37	2-M8	34
	28 • 30 • 32 • 35	28 • 30 • 32 • 35		0015	56	50	015	57	2-M6	14
	22 • 24 • 25	22 • 24 • 25			53					
SFF-080SS- 🗌 B- 🗌 B-200N	28 • 30 • 32 • 35	28 • 30 • 32 • 35	78	67.7	70	30	7.7	42	2-M8	34
	38	38			74					
SFF-090SS- 🗆 B- 🗆 B-250N	25 • 28	25 • 28 • 30 • 32	88	68.3	66	30	8.3	50	2-M8	34
	-	35 • 38 • 40 • 42			74					
SFF-090SS- 🗆 B- 🗆 B-300N	30 • 32	30 • 32	88	68.3	66	30	8.3	50	2-M8	34
	35 • 38 • 40 • 42	35 • 38 • 40 • 42			74					
SFF-100SS- 🗆 B- 🗆 B-450N	32 • 35 • 38 • 40 • 42 • 45 • 48	32 • 35 • 38 • 40 • 42 • 45 • 48	98	90.2	84	40	10.2	56	2-M10	68
SFF-120SS- 🗆 B- 🗆 B-600N	32 • 35 • 38 • 40 • 42 • 45	32 • 35 • 38 • 40 • 42 • 45	118	90.2	84	40	10.2	68	2-M10	68
3FF-12033- L B- L B-600N	48 • 50 • 55	48 • 50 • 55	110	90.2	100	40	10.2	00	2-11110	00


* Nominal diameter of clamping bolt M1/M2 is given as number of bolts - nominal diameter, and the number is the number for one hub.

061

How to Place an Order

SFF-080SS-25BK-30BK-200N

Link Couplings

SCHMIDT

CENTAFLEX

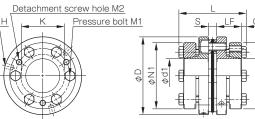
SPRFLEX Plastic Bellows

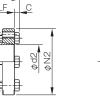
MODELS

SFC	 	 	
SFS			
SFF			
SFM	 	 	
SFH	 	 	

A031

SFF(SS) Types Single Element/Wedge Coupling


Specifications


			Misalignment		Max. rotation	Torsional	Axial	Moment of	
Model	Rated torque [N•m]	Parallel [mm]	Angular [°]	Axial [mm]	speed [min ⁻¹]	stiffness [N•m/rad]	stiffness [N/mm]	inertia [kg•m²]	Mass [kg]
SFF-070SS- 🗆 K- 🗆 K-100N	100	0.02	1	± 0.5	18000	240000	484	0.66 × 10 ⁻³	0.92
SFF-080SS- 🗆 K- 🗆 K-150N	150	0.02	1	± 0.5	17000	120000	96	1.21 × 10 ⁻³	1.03
SFF-080SS- 🗆 K- 🗆 K-200N	200	0.02	1	± 0.5	17000	310000	546	1.11 × 10 ⁻³	1.26
SFF-090SS- 🗆 K- 🗆 K-300N	300	0.02	1	± 0.6	15000	520000	321	1.75 × 10 ⁻³	1.48
SFF-100SS- 🗆 K- 🗆 K-450N	450	0.02	1	± 0.65	13000	740000	540	2.56 × 10 ⁻³	1.87
SFF-120SS- 🗆 K- 🗆 K-600N	600	0.02	1	± 0.8	11000	970000	360	5.33 × 10 ⁻³	2.50
SFF-140SS- 🗆 K- 🗆 K-800N	800	0.02	1	± 1.0	10000	1400000	360	10.28 × 10 ⁻³	4.66
SFF-140SS- 🗆 K- 🗆 K-1000N	1000	0.02	1	± 1.0	10000	1400000	360	14.70 × 10 ⁻³	5.01

* Max. rotation speed does not take into account dynamic balance. * Torsional stiffness values given are measured values for the element alone.

* The moment of inertia and mass are measured for the maximum bore diameter.

Dimensions

Model	d1 [mm]	d2 [mm]	D [mm]	L [mm]	N1 • N 2 [mm]	LF [mm]	S [mm]	C [mm]	K [mm]	H [mm]	M 1 Qty - Nominal dia.	M1 Tightening torque [N • m]	M 2 Qty - Nominal dia	
	18 • 19	18 • 19			53									
SFF-070SS- 🗌 K- 🗌 K-100N	20 • 22 • 24 • 25	20 • 22 • 24 • 25	68	62.9	58	23.5	5.9	5	38	3-5.1	6-M6	10	3-M6	
3FF-07033- 🗆 K- 🗆 K- 100N	28 · 30	28 · 30	00	02.9	63	25.5	3.9	5	20	5-5.1	0-1010	10	2-1110	
	32 • 35	32 • 35			68									
	22 · 24 · 25	22 · 24 · 25			58									
SFF-080SS- 🗆 K- 🗆 K-150N	28 · 30	28 · 30	78	69.3	63	25.5	8.3	5	37	4-5.1	4-M6	10	2-M6	
3FF-06033- 🗆 K- 🗆 K-130N	32 · 35	32 · 35	70	70 07.5	68	25.5	0.5	5		4-5.1	4-1110	10	2-1010	
	-	38			73									
	22 · 24 · 25	22 · 24 · 25			58									
SFF-080SS- 🗌 K- 🗌 K-200N	28 · 30	28 · 30	- 78	- 8 68.7 -	63	25.5	7.7	5	42	3-5.1	6-M6	10	3-M6	
SFF-08055- 🗆 K- 🗆 K-200N	32 • 35	32 • 35	/8	08.7	68	25.5	7.7	2	42	3-3.1	0-110	10	2-110	
	38	38			73									
	28 · 30	28 · 30			63									
	32 • 35	32 • 35		69.3		68								
SFF-090SS- 🗌 K- 🗌 K-300N	38 • 40 • 42	38 • 40 • 42	88		73	25.5	8.3	5	50	3-6.8	6-M6	10	3-M6	
	45	45			78									
	48	48			83									
SFF-100SS- 🗆 K- 🗆 K-450N	32 • 35	32 • 35			68									
	38 · 40 · 42	38 • 40 • 42	98	75.2	73	27.5	10.2	5	56	3-6.8	6-M6	10	3-M6	
SFF-10035- L K- L K-450N	45	45		73.2	78	27.5	10.2	5	50	3-0.8	0-1110	10	2-1110	
	48 • 50	48 • 50			83									
	35	35			68									
	38 • 40 • 42	38 • 40 • 42			73									
	45	45			78									
SFF-120SS- 🗆 K- 🗆 K-600N	48 • 50 • 52	48 · 50 · 52	118	75.2	83	27.5	10.2	5	68	3-6.8	6-M6	10	3-M6	
	55	55			88									
	60 · 62 · 65	60 · 62 · 65			98									
	-	70			108									
	35 • 38	35 • 38			83									
	40 · 42 · 45	40 • 42 • 45			88									
SFF-140SS- 🗆 K- 🗆 K-800N	-	48 • 50 • 52	120	94.6	98	36.5	10.6	5.5	78	3-8.6	6-M8	24	3-M8	
5FF-14055- 🗆 K- 🗆 K-800N	-	55 · 60	120	94.0	108	30.5	10.0	5.5	78	3-8.0	0-110	24	2-1410	
	-	62 · 65 · 70			118									
	_	75 • 80	-		128									
	48 • 50 • 52	48 · 50 · 52	52		98									
	55 • 60 55 • 60	138	04.6	04.6	108	36.5	10.6	5 5	79	3-8.6	6-M8	24	3-M8	
SFF-140SS- 🗌 K- 🗌 K-1000N	62 • 65 • 70	62 • 65 • 70	120	94.6	118	50.5	10.6	5.5	78	3-8.0	0-110	3 24	2-1/10	
	75	75 • 80			128									

* The nominal diameters of the pressure bolt M1 and detachment screw hole M2 are equal to the quantity minus the nominal diameter of the screw threads. The quantities of H, M1 and M2 are the same as the quantity for a hub on one side.

063

Standard Bore Diameter

Madal								S	tanda	rd bo	re dia	mete	r d1	l•d2	[mm]]									
Model	Nominal diameter	18	19	20	22	24	25	28	30	32	35	38	40	42	45	48	50	52	55	60	62	65	70	75	80
SFF-070SS- 🗆 K- 🗆 K-100N	d1	٠	٠	٠	٠	٠	٠	٠		٠	٠														
	d2									٠	٠														
SFF-080SS- 🗆 K- 🗆 K-150N	d1				٠	•	•		•	۲	۲														
5FF-08055- 🗆 K- 🗆 K- 150N	d2									٠	٠														
SFF-080SS- 🗆 K- 🗆 K-200N	d1				٠	٠		۲		۲	۲	•													
3FF-00033- 🗆 K- 🗆 K-200N	d2									٠	٠														
SFF-090SS- 🗆 K- 🗆 K-300N	d1							۲	٠	۲	۲		۲	۲	۲	٠									
SFF-09055- C K- C K-300N	d2									٠	٠		۲	٠											
SFF-100SS- 🗆 K- 🗆 K-450N	d1									۲	۲	٠	٠	٠	٠	٠	۲								
SFF-10055- 🗆 K- 🗆 K-430N	d2									٠	٠		۲	٠											
	d1										٠	٠	٠	•	۲	٠	۲	٠	٠	٠	٠	٠			
SFF-120SS- 🗌 K- 🗌 K-600N	d2										٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠			
	d1										٠	٠	۲	٠	۲										
SFF-140SS- 🗆 K- 🗆 K-800N	d2										٠		٠	٠											٠
	d1															٠	٠	٠	٠	٠	٠	٠	٠	٠	
SFF-140SS- 🗆 K- 🗆 K-1000N	d2																								٠

How to Place an Order

SFF-080SS-25KK-30KK-200N

COUPLINGS

ELECTROMAGNETIC CLUTCHES & BRAKES
SPEED CHANGERS & REDUCERS
INVERTERS
LINEAR SHAFT DRIVES
TORQUE LIMITERS
ROSTA

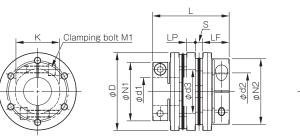
SERIES

JLI	(IES
	Metal Disc Couplings SERVOFLEX
	High-rigidity Couplings SERVORIGID
Metal C	Metal Slit Couplings HELI-CAL
ouplings	Metal Coil Spring Couplings BAUMANNFLEX
	Pin Bushing Couplings PARAFLEX
	Link Couplings SCHMIDT
	Dual Rubber Couplings STEPFLEX
Rubber a	Jaw Couplings MIKI PULLEY STARFLEX
nd Plastic	Jaw Couplings SPRFLEX
Couplings	Plastic Bellows Couplings BELLOWFLEX
	Rubber and Plastic Couplings CENTAFLEX
мс	DELS
SF	C
SF	5
SFI	F

To download	CAD data	or produ	act catalogs:

SFM SFH

SFF(DS) Types Double Element/Clamping


Specifications

			Misalignment		Max. rotation	Torsional	Axial	Moment of	
Model	Rated torque [N•m]	Parallel [mm]	Angular [°]	Axial [mm]	speed [min ⁻¹]	stiffness [N•m/rad]	stiffness [N/mm]	inertia [kg•m²]	Mass [kg]
SFF-040DS- 🗆 B- 🗆 B-8N	8	0.10	1(On one side)	± 0.4	14000	7500	87	0.04 × 10 ⁻³	0.22
SFF-040DS- 🗆 B- 🗆 B-12N	12	0.10	1(On one side)	± 0.4	14000	7500	87	0.04 × 10 ⁻³	0.22
SFF-050DS- 🗆 B- 🗆 B-25N	25	0.20	1(On one side)	± 0.6	14000	16000	72.5	0.13 × 10 ⁻³	0.46
SFF-060DS- 🗆 B- 🗆 B-60N	60	0.20	1(On one side)	± 0.6	14000	52000	199.5	0.28 × 10 ⁻³	0.64
SFF-060DS- 🗆 B- 🗆 B-80N	80	0.20	1(On one side)	± 0.6	14000	52000	199.5	0.29 × 10 ⁻³	0.61
SFF-070DS- 🗆 B- 🗆 B-90N	90	0.25	1(On one side)	± 1.0	14000	120000	242	0.53 × 10 ⁻³	0.90
SFF-070DS- 🗆 B- 🗆 B-100N	100	0.25	1(On one side)	± 1.0	14000	120000	242	0.55 × 10 ⁻³	0.85
SFF-080DS- 🗆 B- 🗆 B-150N	150	0.32	1(On one side)	± 1.0	13000	60000	48	1.10 × 10 ⁻³	1.37
SFF-080DS- 🗆 B- 🗆 B-200N	200	0.31	1(On one side)	± 1.0	13000	155000	273	1.50 × 10 ⁻³	1.72
SFF-090DS- 🗆 B- 🗆 B-250N	250	0.32	1(On one side)	± 1.2	12000	260000	160.5	2.03 × 10 ⁻³	2.02
SFF-090DS- 🗆 B- 🗆 B-300N	300	0.32	1(On one side)	± 1.2	12000	260000	160.5	2.10 × 10 ⁻³	1.92
SFF-100DS- 🗆 B- 🗆 B-450N	450	0.38	1(On one side)	± 1.3	10000	370000	270	4.18 × 10 ⁻³	3.12
SFF-120DS- 🗆 B- 🗆 B-600N	600	0.38	1(On one side)	± 1.6	9000	485000	180	8.87 × 10 ⁻³	4.60

* Max. rotation speed does not take into account dynamic balance.

* Torsional stiffness values given are measured values for the element alone. * The moment of inertia and mass are measured for the maximum bore diameter.

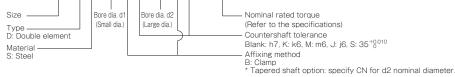
Dimensions

Model	d1 [mm]	d2 [mm]	D [mm]		N1•N2 [mm]	LF [mm]	LP [mm]	S [mm]	d3 [mm]		M 1 • M2 Qty - Nominal dia.	M1 • M2 Tightening torque [N • m]
SFF-040DS- 🗆 B- 🗆 B-8N	8 • 9 • 9. ₅₂₅	8 • 9 • 9.525 • 10 • 11 • 12 • 14 • 15 • 16	38	48.8	33	17.5	6	3.9	17	17	2-M4	3.4
SFF-040DS- 🗆 B- 🗆 B-12N	10 • 11 • 12 • 14 • 15 • 16	10 • 11 • 12 • 14 • 15 • 16	38	48.8	33	17.5	6	3.9	17	17	2-M4	3.4
SFF-050DS- 🗆 B- 🗆 B-25N	10 • 11 • 12 • 14 • 15 • 16 • 17 • 18 • 19	10 • 11 • 12 • 14 • 15 • 16 • 17 • 18 • 19	48	60.8	42	21.5	7	5.4	20	20	2-M5	7
	12 • 14 • 15 • 16 • 17 • 18 • 19	12 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 22			44						2-M6	14
SFF-060DS- 🗆 B- 🗆 B-60N	-	24 • 25 • 28	58	65.8	48	24	7	5.4	31	32	2-M5	7
	-	30			52						2 1015	'
	20 • 22	20 · 22			44						2-M6	14
SFF-060DS- 🗆 B- 🗆 B-80N	24 · 25 · 28	24 • 25 • 28	58	65.8	48	24	7	5.4	31	32	2-M5	7
	30	30			52						2 1115	
SFF-070DS- 🗆 B- 🗆 B-90N	18 • 19	18 • 19 • 20 • 22 • 24 • 25	68	69.8	47	25	8	5.9	37	38	2-M6	14
	-	28 · 30 · 32 · 35			56							
SFF-070DS- 🗆 B- 🗆 B-100N	20 · 22 · 24 · 25	20 • 22 • 24 • 25	68	69.8	47	25	8	5.9	37	38	2-M6	14
	28 · 30 · 32 · 35	28 · 30 · 32 · 35			56							
SFF-080DS- 🗆 B- 🗆 B-150N	22 · 24 · 25	22 • 24 • 25	78	86.6	53	30	10	8.3	40	37	2-M8	34
	28 · 30 · 32 · 35	28 · 30 · 32 · 35			56						2-M6	14
	22 • 24 • 25	22 • 24 • 25			53							
SFF-080DS- 🗌 B- 🗌 B-200N	28 · 30 · 32 · 35	28 · 30 · 32 · 35	78	85.4	70	30	10	7.7	40	42	2-M8	34
	38	38			74							
SFF-090DS- 🗆 B- 🗆 B-250N	25 • 28	25 • 28 • 30 • 32	88	86.6	66	30	10	8.3	50	50	2-M8	34
	-	35 • 38 • 40 • 42			74							
SFF-090DS- 🗆 B- 🗆 B-300N	30 • 32	30 • 32	88	86.6	66	30	10	8.3	50	50	2-M8	34
	35 • 38 • 40 • 42	35 • 38 • 40 • 42			74							
SFF-100DS- 🗆 B- 🗆 B-450N	32 • 35 • 38 • 40 • 42 • 45 • 48	32 • 35 • 38 • 40 • 42 • 45 • 48	98	112.4	84	40	12	10.2	52	56	2-M10	68
SFF-120DS- 🗆 B- 🗆 B-600N	32 • 35 • 38 • 40 • 42 • 45	32 • 35 • 38 • 40 • 42 • 45	118	112.4	84	40	12	10.2	72	68	2-M10	68
511-12005- L B- L B-000N	48 · 50 · 55	48 · 50 · 55	110	112.4	100	-0	12	10.2	,2	00	2 10110	00

* Nominal diameter of clamping bolt M1/M2 is given as number of bolts - nominal diameter, and the number is the number for one hub.

065

COUPLINGS


ELECTROMAGNETIC

SPEED CHANGERS

Standard Bore Diameter Standard bore diameter d1 · d2 [mm] Model Nominal diameter 8 9 9.525 10 11 12 14 15 16 17 18 19 20 22 24 25 28 30 32 35 38 40 42 45 48 50 55 d1 • SFF-040DS- 🗆 B- 🗆 B-8N d2 • • • • • d1 SFF-040DS- 🗆 B- 🗆 B-12N ۲ d2 • • d1 • • • ٠ • • • • • SFF-050DS- 🗆 B- 🗆 B-25N d2 ۲ • • ۲ d1 • • . SFF-060DS- 🗆 B- 🗆 B-60N d2 • • • • • • d1 • . SFF-060DS- 🗆 B- 🗆 B-80N d2 • d1 SFF-070DS- 🗆 B- 🗆 B-90N d2 • • d1 SFF-070DS- 🗆 B- 🗆 B-100N d2 d1 SFF-080DS- B- B-150N d2 d1 • SFF-080DS- B- B- B-200N d2 . • d1 SFF-090DS- 🗆 B- 🗆 B-250N d2 d1 • • SFF-090DS- B- B-300N • • d2 • • d1 SFF-100DS- 🗆 B- 🗆 B-450N d2 • • • • • • • ۲ d1 • • SFF-120DS- 🗆 B- 🗆 B-600N • d2 • • • * The bore diameters marked with are supported as standard bore diameter.

How to Place an Order

SFF-080DS-25BK-30BK-200N

MIKIPULLEY 065

To download CAD data or product catalogs:	

A031 Web code

	Dual Rubber Couplings STEPFLEX
Dibboro	Jaw Couplings MIKI PULLEY STARFLEX
ad Diantin (Jaw Couplings SPRFLEX
	Plastic Bellows Couplings BELLOWFLEX
	Rubber and Plastic Couplings CENTAFLEX
10	DELS
FC	:
FS	5
FF	-

SERVORIGID Metal Slit **Metal Couplings** HELI-CAL Metal Coil Spring BAUMANNFLEX Pin Bushing PARAFLEX

SERIES

Metal Disc

Couplings SERVOFLEX

High-rigidity

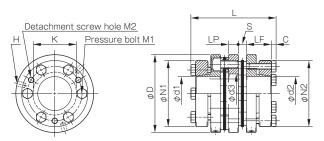
Link Couplings SCHMIDT

Ν

s S SI

SFM SFH

SFF(DS) Types Double Element/Wedge Coupling


Specifications

			Misalignment		Max. rotation	Torsional	Axial	Moment of	
Model	Rated torque [N•m]	Parallel [mm]	Angular [°]	Axial [mm]	speed [min ⁻¹]	stiffness [N•m/rad]	stiffness [N/mm]	inertia [kg•m²]	Mass [kg]
SFF-070DS- 🗆 K- 🗆 K-100N	100	0.25	1(On one side)	± 1.0	14000	120000	242	0.80 × 10 ⁻³	1.10
SFF-080DS- 🗆 K- 🗆 K-150N	150	0.32	1(On one side)	± 1.0	13000	60000	48	1.36 × 10 ⁻³	1.56
SFF-080DS- 🗆 K- 🗆 K-200N	200	0.31	1(On one side)	± 1.0	13000	155000	273	1.42×10^{-3}	1.60
SFF-090DS- 🗆 K- 🗆 K-300N	300	0.32	1(On one side)	± 1.2	12000	260000	160.5	2.24 × 10 ⁻³	1.87
SFF-100DS- 🗆 K- 🗆 K-450N	450	0.38	1(On one side)	± 1.3	10000	370000	270	3.51 × 10 ⁻³	2.49
SFF-120DS- 🗆 K- 🗆 K-600N	600	0.38	1(On one side)	± 1.6	9000	485000	180	7.17 × 10 ⁻³	3.29
SFF-140DS- 🗆 K- 🗆 K-800N	800	0.44	1(On one side)	± 2.0	8000	700000	180	14.68 × 10 ⁻³	6.05
SFF-140DS- 🗆 K- 🗆 K-1000N	1000	0.44	1(On one side)	± 2.0	8000	700000	180	19.11 × 10 ⁻³	6.39

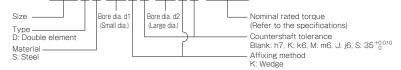
* Max. rotation speed does not take into account dynamic balance. * Torsional stiffness values given are measured values for the element alone.

* The moment of inertia and mass are measured for the maximum bore diameter.

Dimensions

Model	d1 [mm]	d2 [mm]	D [mm]	L [mm]	N1 • N 2 [mm]	LF [mm]	LP [mm]	S [mm]	C [mm]	d3 [mm]	K [mm]	H [mm]		M1 Tightening torque [N • m]	
	18 • 19	18 • 19			53										
	20 · 22 · 24 · 25	20 • 22 • 24 • 25	60	76.0	58	22.5	0	5.0	-	27	20	2 5 1	6.146	10	2.146
SFF-070DS- 🗌 K- 🗌 K-100N	28 · 30	28 • 30	68	76.8	63	23.5	8	5.9	5	37	38	3-5.1	6-M6	10	3-M6
	32 • 35	32 • 35			68										
	22 · 24 · 25	22 · 24 · 25			58										
	28 · 30	28 · 30			63				_						
SFF-080DS- 🗌 K- 🗌 K-150N	32 • 35	32 • 35	78	87.6	68	25.5	10	8.3	5	40	37	4-5.1	4-M6	10	2-M6
	-	38			73										
	22 • 24 • 25	22 · 24 · 25			58										
	28 · 30	28 • 30	78	06.4	63	25.5	10		5	40	42	2 5 1	6 MG	10	3-M6
SFF-080DS- 🗌 K- 🗌 K-200N	32 • 35	32 • 35	/8	86.4	68	25.5	10	7.7	2	40	42	3-5.1	6-M6	10	2-1410
	38	38			73										
	28 • 30	28 • 30			63										
	32 • 35	32 • 35			68										
SFF-090DS- 🗆 K- 🗆 K-300N	38 • 40 • 42	38 • 40 • 42	88	87.6	73	25.5	10	8.3	5	50	50	3-6.8	6-M6	10	3-M6
	45	45			78										
	48	48			83										
	32 • 35	32 • 35			68										
SFF-100DS- 🗌 K- 🗌 K-450N	38 • 40 • 42	38 · 40 · 42	98	97.4	73	27.5	12	10.2	5	52	56	3-6.8	6-M6	10	3-M6
3FF-10003- 🗆 K- 🗆 K-430N	45	45	90	57.4	78	27.5	12	10.2	J	52	50	5-0.0	0-1010	10	5-1010
	48 • 50	48 • 50			83										
	35	35			68										
	38 • 40 • 42	38 • 40 • 42			73										
	45	45			78										
SFF-120DS- 🗌 K- 🗌 K-600N	48 • 50 • 52	48 • 50 • 52	118	97.4	83	27.5	12	10.2	5	72	68	3-6.8	6-M6	10	3-M6
	55	55			88										
	60 · 62 · 65	60 · 62 · 65			98										
	-	70			108										
	35 • 38	35 • 38			83										
	40 • 42 • 45	40 • 42 • 45			88										
SFF-140DS- 🗌 K- 🗌 K-800N	_	48 • 50 • 52	138	120.2	98	36.5	15	10.6	5.5	80	78	3-8.6	6-M8	24	3-M8
	-	55 • 60	150	120.2	108	50.5	15	10.0	5.5	00	70	5 0.0	0 100	27	5 1410
	_	62 • 65 • 70			118										
	-	75 • 80			128										
	48 • 50 • 52	48 • 50 • 52			98										
SFF-140DS- 🗆 K- 🗆 K-1000N	55 • 60	55 • 60	138	120.2	108	36.5	15	10.6	5.5	80	78	3-8.6	6-M8	24	3-M8
	62 • 65 • 70	62 • 65 • 70			118	20.0			5.5			2 0.0	0		5
	75	75 • 80			128										

* The nominal diameters of the pressure bolt M1 and detachment screw hole M2 are equal to the quantity minus the nominal diameter of the screw threads. The quantities of H, M1 and M2 are the same as the quantity for a hub on one side


067

Standard Bore Diameter

Model								S	itanda	ard b	ore di	amete	er d	1∙d2	[mm]										
Model	Nominal diameter	18	19	20	22	24	25	28	30	32	35	38	40	42	45	48	50	52	55	60	62	65	70	75	80
SFF-070DS- 🗆 K- 🗆 K-100N	d1	٠	٠	٠	٠	٠	٠	۲	٠	٠	۲														
3FF-07003- 🗆 K- 🗆 K-100N	d2	٠				٠				۲															
SFF-080DS- 🗆 K- 🗆 K-150N	d1				٠	•	۲	۲		٠	۲														
SFF-000DS K K-150N	d2					٠		۲		٠	۲														
SFF-080DS- 🗆 K- 🗆 K-200N	d1				٠	•	٠	۲		٠	۲	٠													
3FF-000D3- 🗆 K- 🗆 K-200N	d2						۲	۲		٠	٠														
SFF-090DS- 🗆 K- 🗆 K-300N	d1							۲	٠	۲	۲	٠	۲	۲	۲	۲									
SFF-090DS- C K- C K-300N	d2									۲	٠		۲	٠											
SFF-100DS- 🗆 K- 🗆 K-450N	d1									۲	۲	٠	۲	٠	۲	۲	۲								
SFF-100DS- C K- C K-430N	d2									۲	٠		۲	٠			٠								
SFF-120DS- 🗆 K- 🗆 K-600N	d1										۲	٠	۲	۲	۲	۲	۲	۲	٠	۲	٠	۲			
SFF-12003- C K- C K-000N	d2										٠	٠	۲	٠			٠	٠		٠					
SFF-140DS- 🗆 K- 🗆 K-800N	d1										۲	٠	۲	۲	۲										
5FF-14005- C K- C K-800N	d2										٠	٠	٠	٠	٠	٠	۲	٠		٠		٠		٠	٠
SFF-140DS- 🗆 K- 🗆 K-1000N	d1															۲	۲	۲	٠	٠	٠	۲	٠	٠	
SFF-14003- C K- C K-1000N	d2																								

How to Place an Order

SFF-080DS-25KK-30KK-200N

COUPLINGS

ETP BUSHINGS
ELECTROMAGNETIC CLUTCHES & BRAKES
SPEED CHANGERS
& REDUCERS
INVERTERS
LINEAR SHAFT DRIVES
TORQUE LIMITERS
ROSTA

SERIES

SEI	RIES
	Metal Disc Couplings SERVOFLEX
	High-rigidity Couplings SERVORIGID
Metal C	Metal Slit Couplings HELI-CAL
ouplings	Metal Coil Spring Couplings BAUMANNFLEX
	Pin Bushing Couplings PARAFLEX
	Link Couplings SCHMIDT
	Dual Rubber Couplings STEPFLEX
Rubber ar	Jaw Couplings MIKI PULLEY STARFLEX
nd Plastic (Jaw Couplings SPRFLEX
Couplings	Plastic Bellows Couplings BELLOWFLEX
	Rubber and Plastic Couplings CENTAFLEX
мс	DELS
SF	c
SF	5

SFS											
SFF					 						
SFM	••••	•••	• • •	•••	 •••	•••	•••	 	• •	•	
SFH		•••			 			 			

To download CAD data or product catalogs:

SFF Models

Options **Tapered shaft supported**

One of the hubs is a taper flange, supporting servo motor tapered shafts.

Specification	s/Dim	nens	sior	າຣ	Si	ngle	e El	em	ent,	/Cla	mp	oing	J						
Model	Rated torque [N•m]		oment inertia kg•m	1	Mass [kg]					K ØDA		lampi	ng bol	It M	- L S				
SFF-040SS- 🗆 B-11CN-8N	8	0.0)3 × 1() — 3	0.20				WÀ		+/	Cent	ter nu	<u>t</u>		LF2	-		
SFF-040SS- B-11CN-12N	12	0.0)3 × 10) – 3	0.18						H/	/	-	<u>ا</u>			卢	W	+0.030
SFF-050SS- 🗌 B-14CN-25N	25	0.0)9 × 1() — 3	0.36				/#			\backslash		A	\odot			- -	
SFF-050SS- 🗆 B-16CN-25N	25	0.1	0 × 10) — 3	0.41			4	<u> </u>			\perp	D Ø	φ N1				S S	
SFF-060SS- 🗌 B-16CN-60N	60	0.1	8 × 10) — 3	0.54			(LAL	¥	14	/	9	00				e -	
SFF-060SS- 🗆 B-16CN-80N	80	0.1	9 × 10) – 3	0.52				(A		Ŧ)	/		<u>+</u>	� ₽				1.10
* The moment of inertia and mass * For other Specifications, see Spec						ter.				4			_		L/#\		aperec	<u>l, 1/10</u>	<u>¢d2</u>
Model	d1 [mm]	d2 [mm]	W [mm]	T [mm]	D [mm]	L [mm]	N1 [mm]	N 2 [mm]	LF1 [mm]	LF2 [mm]	S [mm]	K [mm]	H [mm]	M Qty - Nominal dia.	MTightening torque [N • m]	DA [mm]	W A [mm]	J Nominal × pitch	J Tightening torque [N • m]
SFF-040SS- 🗆 B-11CN-8N	$8 \sim 9.525$	11	4	12.2	38	46.4	33	22	17.5	25	3.9	17	5.1	2-M4	3.4	12	6	M6 imes 1.0	10
SFF-040SS- 🗆 B-11CN-12N	$10 \sim 16$	11	4	12.2	38	46.4	33	22	17.5	25	3.9	17	5.1	2-M4	3.4	12	6	M6 imes 1.0	10

9	SFF-050SS- 🗆 B-14CN-25N	$10 \sim 19$	14	4	15.1	48	56.9	42	27.5	21.5	30	5.4	20	5.1	2-M5	7	15	8	M8 imes 1.0	20	
	SFF-050SS- 🗆 B-16CN-25N	$10 \sim 19$	16	5	17.3	48	67.9	42	29.5	21.5	41	5.4	20	6.8	2-M5	7	16	10	M 10 × 1.25	30	
9	SFF-060SS- 🗆 B-16CN-60N	$12\sim19$	16	5	17.3	58	70.4	44	29.5	24	41	5.4	32	6.8	2-M6	14	16	10	$M10\times1.25$	30	
		$20 \sim 22$						44							2-M6	14					
1	SFF-060SS- 🗆 B-16CN-80N	$24 \sim 28$	16	5	17.3	58	70.4	48	29.5	24	41	5.4	32	6.8	2-M5	7	16	10	M 10 $ imes$ 1.25	30	
		30						52							2 1015	,					

WA

0

Specifications/Dimensions Double Element/Clamping

Model	Rated torque [N ∙ m]	Moment of inertia [kg • m ²]	Mass [kg]
SFF-040DS- 🗌 B-11CN-8N	8	0.04×10^{-3}	0.25
SFF-040DS- 🗆 B-11CN-12N	12	0.04 × 10 ⁻³	0.23
SFF-050DS- 🗆 B-14CN-25N	25	0.12×10^{-3}	0.45
SFF-050DS- 🗆 B-16CN-25N	25	0.13 × 10 ⁻³	0.49
SFF-060DS- 🗆 B-16CN-60N	60	0.24 × 10 ⁻³	0.67
SFF-060DS- 🗆 B-16CN-80N	80	0.26 × 10 ⁻³	0.64

* The moment of inertia and mass are measured for the maximum bore diameter. * For other Specifications, see Specifications for Double Element/Clamping.

Model	d1 [mm]	d2 [mm]	W [mm]	T [mm]	D [mm]	L [mm]	N1 [mm]	N 2 [mm]	LF1 [mm]	LF2 [mm]	LP [mm]	S [mm]	d3 [mm]	K [mm]	H [mm]		M Tightening torque [N • m]			J Nominal × pitch	
SFF-040DS- 🗆 B-11CN-8N	8~9. ₅₂₅	11	4	12.2	38	56.3	33	22	17.5	25	6	3.9	17	17	5.1	2-M4	3.4	12	6	M6 imes 1.0	10
SFF-040DS- 🗆 B-11CN-12N	$10 \sim 16$	11	4	12.2	38	56.3	33	22	17.5	25	6	3.9	17	17	5.1	2-M4	3.4	12	6	M6 × 1.0	10
SFF-050DS- 🗆 B-14CN-25N	$10 \sim 19$	14	4	15.1	48	69.3	42	27.5	21.5	30	7	5.4	20	20	5.1	2-M5	7	15	8	$M8 \times 1.0$	20
SFF-050DS- B-16CN-25N	10~19	16	5	17.3	48	80.3	42	29.5	21.5	41	7	5.4	20	20	6.8	2-M5	7	16	10	M 10 × 1.25	30
SFF-060DS- 🗆 B-16CN-60N	$12 \sim 19$	16	5	17.3	58	82.8	44	29.5	24	41	7	5.4	31	32	6.8	2-M6	14	16	10	M 10 × 1.25	30
	$20 \sim 22$						44									2-M6	14				
SFF-060DS- B-16CN-80N	$24 \sim 28$	16	5	17.3	58	82.8	48	29.5	24	41	7	5.4	31	32	6.8	2-M5	7	16	10	M 10 × 1.25	30
	30						52									2 1015	,				

Standard Bore Diameter

How to Place an

Order

Model							S	tandard	Bore Dia	ameter	d1 [mm	n]						
Model	8	9	9.525	10	11	12	14	15	16	17	18	19	20	22	24	25	28	30
SFF-040 🗆 - 🗆 B-11CN-8N	٠	٠	٠															
SFF-040 🗆 - 🗆 B-11CN-12N				•		•			•									
SFF-050 🗆 - 🗌 B-14CN-25N				٠	٠	٠	٠	٠	٠	٠	•	•						
SFF-050 🗆 - 🗌 B-16CN-25N				•		•			•	•	•	•						
SFF-060 🗆 - 🗆 B-16CN-60N						•	٠	٠	•	•	•	•						
SFF-060 🗆 - 🗌 B-16CN-80N													•	•		•	•	
* The bore diameters marked with er ausported as standard bore diameter.																		

SFF-050DS-10BK-14CN-25N

Bore dia d1

(Nominal rated torqu Refer to the specifi	
	[d2]CN CN : Taper flange	*Coloct dQ for CN
	Countershaft tolera	
P		M : m6 , J : j6 , S : 35 ^{+0.010}

1 F2 Center nut LΡ Clamping bolt M W +0.0 φN2 -Z

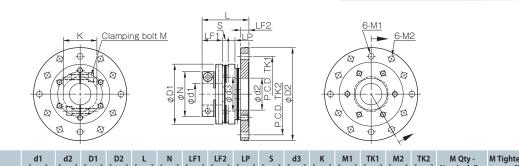
Tapered, 1/10

ød2

068 MIKI PULLEY

Options Flange-Mounted

One of the hubs is flange-shaped, allowing mounting on a DD motor, speed reducer, etc.


Specifications

			Misalignment		Max. rotation	Torsional	Axial	Moment of	
Model	Rated torque [N • m]	Parallel [mm]	Angular [°]	Axial [mm]	speed [min ⁻¹]	stiffness [N•m/rad]	stiffness [N/mm]	inertia [kg • m²]	Mass [kg]
SFF-070DS- 🗆 B-105D-100N	100	0.25	1 (On one side)	± 1.0	1000	120000	242	1.20 × 10 ⁻³	1.08
SFF-080DS- 🗆 B-166D-200N	200	0.31	1 (On one side)	± 1.0	1000	155000	273	8.35 × 10 ⁻³	3.11
SFF-090DS- 🗆 B-166D-300N	300	0.32	1 (On one side)	± 1.2	1000	260000	160.5	8.69 × 10 ⁻³	3.18
SFF-100DS- 🗆 B-166D-450N	450	0.38	1 (On one side)	± 1.3	1000	370000	270	10.01 × 10 ⁻³	3.91
SFF-120DS- 🗆 B-166D-600N	600	0.38	1 (On one side)	± 1.6	1000	485000	180	12.66×10^{-3}	4.57

* Max. rotation speed does not take into account dynamic balance.

* Torsional stiffness values given are measured values for the element alone. * The moment of inertia and mass are measured for when d1 is the maximum bore diameter.

Dimensions

Model	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]		torque [N·m]
SFF-070DS- 🗌 B-105D-100N	$28\sim35$	36	68	105	54.8	56	25	10	8	5.9	37	38	6.4	86	6.4	92	2-M6	14
SFF-080DS- 🗆 B-166D-200N	$28 \sim 38$	39	78	166	68.9	70(74)	30	13.5	10	7.7	40	42	6.4	150	8.6	150	2-M8	34
SFF-090DS- 🗌 B-166D-300N	$35\sim42$	49	88	166	70.1	74	30	13.5	10	8.3	50	50	6.4	150	8.6	150	2-M8	34
SFF-100DS- 🗆 B-166D-450N	$32 \sim 48$	51	98	166	85.9	84	40	13.5	12	10.2	52	56	6.4	150	8.6	150	2-M10	68
SFF-120DS- 🗆 B-166D-600N	$48 \sim 55$	67	118	166	85.9	100	40	13.5	12	10.2	72	68	6.4	150	8.6	150	2-M10	68

* The figure in parentheses () for the SFF-080DS is the value when d1 is ø38 mm.

* Special arrangements may be possible for mounting holes at the flange end regarding bore diameter, number, and pitch. Check if arrangements are possible.

Standard Bore Diameter

Model					Standard I	Bore Diameter	d1 [mm]				
Model	28	30	32	35	38	40	42	45	48	50	55
SFF-070DS- 🗆 B-105D-100N	•	•	•	•							
SFF-080DS- 🗆 B-166D-200N	•	•	•	•	•						
SFF-090DS- 🗆 B-166D-300N				•	•	•	•				
SFF-100DS- 🗆 B-166D-450N			•	•	•	•	•	•	٠		
SFF-120DS- 🗆 B-166D-600N									•	•	•

* The bore diameters marked with ${\color{black}{ullet}}$ are supported as standard bore diameter.

How to Place an Order

SFF-080DS-38BK-166D-200N

Nominal rated torque (Refer to the specifications) [D2] D D: Flange-mounted

* Select [D2] D after d1.

Countershaft tolerance Blank : h7 , K : k6 , M : m6 , J : j6 , S : $35^{+0.010}_{-0.010}$

Affixing method

B : Clamp

ETP BUSHINGS
ELECTROMAGNETIC
CLUTCHES & BRAKES
SPEED CHANGERS
& REDUCERS
INVERTERS
LINEAR SHAFT DRIVES

SERIES

	Metal Disc Couplings SERVOFLEX
	High-rigidity Couplings SERVORIGID
-	Metal Slit Couplings HELI-CAL
-	Metal Coil Spring Couplings BAUMANNFLEX
	Pin Bushing Couplings PARAFLEX
	Link Couplings SCHMIDT
	Dual Rubber Couplings STEPFLEX
•	Jaw Couplings MIKI PULLEY STARFLEX
2	Jaw Couplings SPRFLEX
•	Plastic Bellows Couplings BELLOWFLEX
	Rubber and Plastic Couplings CENTAFLEX

MODE	LS										
SFC		 	 								
SFS			 								
SFF										-	
SFM		 	 								
SFH											

Web code

A031

SFF Models

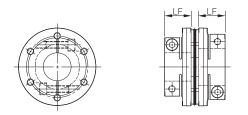
Items Checked for Design Purposes

Special Items to Take Note of

You should note the following to prevent any problems.

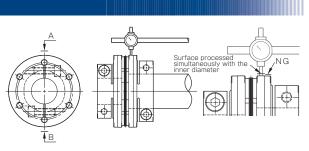
(1) Always be careful of parallel, angular, and axial misalignment.

(2) Always tighten bolts with the specified torque.


Precautions for Handling

Couplings are assembled at high accuracy using a special mounting jig to ensure accurate concentricity of left and right internal diameters. Take extra precautions when handling couplings, should strong shocks be given on couplings, it may affect mounting accuracy and cause the parts to break during use.

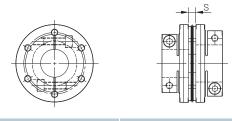
- (1) Couplings are designed for use within an operating temperature range of -30° C to 120°C. Although the couplings are designed to be waterproof and oilproof, do not subject them to excessive amounts of water and oil as it may cause part deterioration.
- (2) Handle the element with care as it is made of a thin stainless steel metal disc, also making sure to be careful so as not to injure yourself.
- (3) Do not tighten up clamping bolts or pressure bolts until after inserting the mounting shaft.
- (4) Mounting shaft is assumed to be a round shaft.


Mounting (Clamping)

- (1) Check that coupling clamping bolts have been loosened and remove any rust, dust, oil residue, etc. from the inner diameter surfaces of the shaft and couplings. In particular, never allow oil or grease containing antifriction or other agent (molybdenum-, silicon-, or fluorine-based), which would dramatically affect the friction coefficient, to contact the surface.
- (2) Be careful when inserting the couplings into the shaft so as not to apply excessive force of compression or tensile force to the element.
- (3) Ensure that the length of the coupling inserted onto the motor shaft touches the shaft for the entire length of the clamping hub of the coupling (LF dimension), as shown in the diagram below, and position it so that it does not interfere with the elements, spacers or the other shaft. Then temporarily tighten the two clamping bolts, tightening them alternately until the coupling cannot be manually rotated.

Model (Clamping)	LF dimension [mm]
SFF-040	17.5
SFF-050	21.5
SFF-060	24
SFF-070	25
SFF-080	30
SFF-090	30
SFF-100	40
SFF-120	40

(4) Hold a dial gauge against the outer diameter of the clamping hub on the motor shaft side (the surface processed simultaneously with the inner diameter), and then tighten the two clamping bolts while turning the motor shaft by hand and adjusting the difference in the runout values at A and B in the figure below is 0.02 mm or less (and as close to 0 as possible).



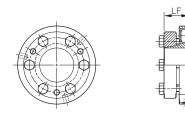
(5) Alternately fasten the two clamping bolts as you adjust them, and finish by tightening both bolts to the appropriate tightening torque of the following table, using a calibrated torque wrench.
Since it is fastened by two clamping bolts tightening one bolt

Since it is fastened by two clamping bolts, tightening one bolt before the other will place more than the prescribed axial force on the bolt tightened first when the other bolt is tightened. Be sure to tighten them alternately, a little at a time.

Clamping bolt nominal diameter	Tightening torque [N·m]
M4	3.4
M5	7
M6	14
M8	34
M10	68

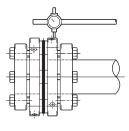
- (6) Mount the motor, to which the coupling has already been mounted, on the body of the machinery. At that time, adjust the motor mounting position (centering location) while inserting the coupling onto the driven shaft (a feed screw or the like), being alert to undue forces on the element such as compression or pulling.
- (7) Make the length of the driven shaft (feed screw or the like) inserted into the coupling connect to the shaft for the length of the LF dimension (described above), alternately tighten the two clamping bolts, and provisionally tighten enough that the coupling cannot be manually rotated.
- (8) In addition, keep the dimension between clamping hub faces (the S dimension in the diagram) to within the allowable misalignment of the axial displacement with respect to a reference value. Note that the tolerance values were calculated based on the assumption that both the level of parallel misalignment and angular deflection are zero. Adjust to keep this value as low as possible.

Model (Clamping)	S dimension [mm]
SFF-040	3.9
SFF-050	5.4
SFF-060	5.4
SFF-070	5.9
SFF-080 (-150N)	8.3
SFF-080 (-200N)	7.7
SFF-090	8.3
SFF-100	10.2
SFF-120	10.2


- (9) Adjust runout using the same procedure as for the motor shaft side, and then finish by tightening the clamping bolts to the appropriate tightening torque.
- (10) To protect against initial loosening of the clamping bolt, we recommend operating for a set period of time and then retightening to the appropriate tightening torque.

COUPLINGS

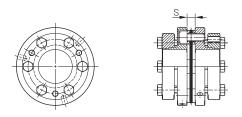
ETP BUSHINGS


Mounting (Wedge Coupling)

- (1) Check that coupling pressure bolts have been loosened and remove any rust, dust, oil residue, etc. from the inner diameter surfaces of the shaft and couplings. In particular, never allow oil or grease containing antifriction or other agent (molybdenum-, silicon-, or fluorine-based), which would dramatically affect the friction coefficient, to contact the surface.
- (2) Be careful when inserting the couplings into the shaft so as not to apply excessive force of compression or tensile force to the element.
- (3) Insert each coupling far enough onto the motor shaft that it touches the shaft along the entire length of the coupling flange (LF dimension), as shown in the diagram below. Position it so that it does not interfere with the elements, spacers or the other shaft and then hold it in place.

Model (Wedge coupling)	LF dimension [mm]
SFF-070	23.5
SFF-080	25.5
SFF-090	25.5
SFF-100	27.5
SFF-120	27.5
SFF-140	36.5

- (4) Using the drive pin hole, lightly tighten the pressure bolt on the diagonal.
- (5) Touch the dial gauge to the flange end face or outer diameter on the motor shaft side. Then, while gently rotating the motor shaft manually, adjust the flange periphery and end face by hammering until the runout is as close to zero as possible.


(6) Sequentially fasten the pressure bolts while doing hammering adjustments, and then use a calibrated torque wrench to tighten all the pressure bolts the appropriate tighteni torques below. See the follow figure for the tighteni procedure for the pressure bo Try to tighten them evenly.

10	
s to	
ing	
ring	
ng	2 5
olts.	0 0

Pressure bolt nominal diameter	Tightening torque [N·m]
M6	10
M8	24

- (7) Tighten the motor shaft's pressure bolts at the nominal torque and check that the runout value is low.
- (8) Mount the motor, to which the coupling has already been mounted, on the body of the machinery. At that time, adjust the motor mounting position (centering location) while inserting the coupling onto the driven shaft (a feed screw or the like), taking care to not deform the disc. Also insert each coupling far enough onto the paired shaft that it touches the shaft along the entire length of the coupling flange (LF dimension) and then hold it in that position.

(9) Keep the width of the dimension between flange faces (S dimension in the diagram) within the allowable error range for axial misalignment with respect to the reference value. Note that the tolerance values were calculated based on the assumption that both the level of parallel misalignment and angular deflection are zero. Adjust to keep this value as low as possible.

Model	S dimension [mm]
SFF-070	5.9
SFF-080 (-150N)	8.3
SFF-080 (-200N)	7.7
SFF-090	8.3
SFF-100	10.2
SFF-120	10.2
SFF-140	10.6

- (10) Sequentially tighten the pressure bolts on the driven shaft (a feed screw or the like) side using the same procedure as for the motor shaft side pressure bolts, and then tighten to the appropriate tightening torque.
- (11) To protect against initial loosening of the pressure bolt, we recommend operating for a set period of time and then retightening to the appropriate tightening torque.

11	IVERTERS
LI	NEAR SHAFT DRIVES
Т	ORQUE LIMITERS
R	OSTA
SEF	RIES
	Metal Disc Couplings SERVOFLEX
	High-rigidity Couplings SERVORIGID
Metal Co	Metal Slit Couplings HELI-CAL

	PARAFLEX
	Link Couplings SCHMIDT
	Dual Rubber Couplings STEPFLEX
Rubber ai	Jaw Couplings MIKI PULLEY STARFLEX
und Plastic (Jaw Couplings SPRFLEX
Couplings	Plastic Bellows Couplings BELLOWFLEX

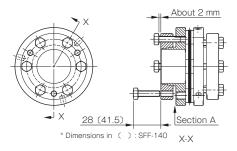
Pin Bushing

		C)	(
10	D	E	L	s													
F	С																
F	5																
															1	1	1

Ν

s

Rubber and Plastic


SFS															
SFF															
SFM	 	•••	 	•••		• •	•	• •		•	•		•	•	•
SFH	 	•••	 	•••				• •							

SFF Models

Items Checked for Design Purposes

Removal

- (1) Check to confirm that there is no torque or axial load being applied to the coupling. There may be cases where a torque is applied to the coupling, particularly when the safety brake is being used. Make sure to verify that this is not occurring before removing parts.
- (2) Loosen all the clamping bolts or pressure bolts (loosen pressure bolts until the gap between bearing seat and sleeve is about 2mm).
- (3) For clamping type, release the fastening to the shaft by sufficiently loosening all clamping bolts. Note that grease has been applied to the clamping bolts, so do not remove them all the way.
- (4) In the case of a wedge coupling system that tightens a pressure bolt from the axial direction, the sleeve will be self-locking, so the coupling between flange and shaft cannot be released simply by loosening the pressure bolt. (Note that in some cases, a coupling can be released by loosening a pressure bolt.) For that reason, when designing devices, a space must be installed for inserting a detachment screw.

- (5) Pull out three of the pressure bolts (two 080, 150 N) loosened in step (2), insert them into the detachment screw holes on the sleeve, and tighten them in order, a little at a time. The coupling will be released.
- (6) If there is no space in the axial direction, insert the tip of a flathead screwdriver or the like into part A and lightly tap perpendicular to the shaft or use it as a lever to pry off the coupling. Use appropriate caution to not damage the coupling body or the pressure bolts.

Suitable Torque Screwdriver/Torque Wrench ■ Clamping bolt

Nominal bolt diameter	Tightening torque [N • m]	Torque screwdriver/ wrench	Hexagon bit/ head	Coupling size
M4	3.4	CN500LTDK	SB 3mm	040
M5	7	N10LTDK	SB 4mm	050 · 060
M6	14	N25LCK	25HCK 5mm	060 · 070 · 080
M8	34	N50LCK	50HCK 6mm	080 · 090
M10	68	N100SPCK $ imes$ 68N \cdot m	100HCK 8mm	100 · 120

* Torque screwdriver (wrench)/bit (head) models are those of Nakamura Mfg. Co., Ltd.

Pressure bolt

Nominal bolt diameter	Tightening torque [N • m]	Torque wrench	Spanner head	Coupling size
M6	10	$\texttt{N12SPCK} \times \texttt{10N} \boldsymbol{\cdot} \texttt{m}$	25SCK 10mm	$070 \sim 120$
M8	24	$\text{N50SPCK} \times 24\text{N} \boldsymbol{\cdot} \text{m}$	50SCK 13mm	140

* Torque wrench/spanner head models are those of Nakamura Mfg. Co., Ltd.

Differences in Torsional Stiffness due to Element Shape

Elements used by SFF models may be either square or hexagonal. Since torque is transmitted by coupling the hubs to each other via the element, torsional stiffness is higher in couplings that use hexagonal elements transmitting torque with six bolts, at the expense of some flexibility. Choose your element shape accordingly.

Model (nominal rated torque)	Element shape
SFF-040	Square
SFF-050	Square
SFF-060	Hexagonal
SFF-070	Hexagonal
SFF-080 (-150N)	Square
SFF-080 (-200N)	Hexagonal
SFF-090	Hexagonal
SFF-100	Hexagonal
SFF-120	Hexagonal
SFF-140	Hexagonal

Center Nut for Tapered Shafts

The center nut designated for clamping-type sizes 040/050/060 is shipped pre-installed depending on the opposite coupling-end bore diameter. Check the table below.

Clamping hub type model	Center nut installation
SFF-040 🗆 - 🗆 B-11CN-8N	All pre-installed
SFF-040 🗆 - 🗆 B-11CN-12N	Installed where d1 <d12< th=""></d12<>
SFF-050 🗆 - 🗆 B-14CN-25N	Installed where d1 <d15< th=""></d15<>
SFF-050 🗆 - 🗆 B-16CN-25N	Installed where d1 <d16< th=""></d16<>
SFF-060 🗆 - 🗆 B-16CN-60N	Installed where d1 <d16< th=""></d16<>
SFF-060 🗆 - 🗆 B-16CN-80N	All bundled

Flange Mounted

You must prepare bolts separately for mounting of flange-mounted models of clamping-type sizes 070 to 120.

Before mounting at the flange end, check the device and material being mounted to, strength classification of bolts, etc. for appropriate mounting.

Clamping and Wedge Coupling in Combination

For the range of common sizes between clamping and wedge coupling (070 - 120), a common element is used per each size allowing you to use them in combination.

When specifying bore diameters in this instance, specify d1: clamping, d2: wedge coupling in that order, regardless of larger and smaller bore diameters.

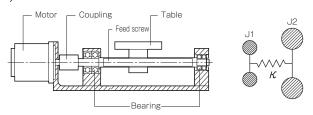
Example) SFF-080SS-30B-25K-200N

Bore dia. d1		Affixing method
Affixing method	J	K: Wedge
B: Clamp		Bore dia. d2

Rated torques after combination are given for the clamping side. See the table below.

d1 clamping (desi	gnation B)	d2 wedge coupling (d	esignation K)	Rated torque after
Model	Bore diameter range [mm]	Model	Bore diameter range [mm]	combination [N·m]
SFF-070 (-90N)	18 · 19	SFF-070 (-100N)	$18\sim35$	90
SFF-070 (-100N)	$20 \sim 35$	SFF-070 (-100N)	$18 \sim 35$	100
SFF-080 (-150N)	$22 \sim 35$	SFF-080 (-150N)	$22 \sim 38$	150
SFF-080 (-200N)	22~38	SFF-080 (-200N)	22~38	200
SFF-090 (-250N)	25 · 28	SFF-090 (-300N)	$28 \sim 48$	250
SFF-090 (-300N)	30~42	SFF-090 (-300N)	$28 \sim 48$	300
SFF-100 (-450N)	32~48	SFF-100 (-450N)	$32 \sim 50$	450
SFF-120 (-600N)	32~55	SFF-120 (-600N)	$35 \sim 70$	600

Points to Consider Regarding the Feed Screw System


Gain adjustment in feed screw systems using a servo motor may cause the servo motor to oscillate. If oscillation occurs, adjustment will need to be made such as by using the filter function or other electrical control system to resolve this issue.

To handle issues such as oscillation, it will be necessary to take into account the torsional natural frequency for the system overall during the design stage, including the torsional stiffness for the coupling and feed screw section and the moment of inertia and other characteristics. Please contact Miki Pulley with any questions regarding servo motor oscillation.

How to Find the Natural Frequency of a Feed Screw System

Select a coupling based on the standard torque or maximum torque of the servo motor.

Next, find the overall natural frequency, Nf, from the torsional stiffness of the coupling and feed screw, κ , the moment of inertia of driving side, J1, and the moment of inertia of driven side, J2, for the feed screw system shown below.

Natural frequency of overall feed screw system Nf [Hz]

 $Nf = \frac{1}{2\pi} \sqrt{\kappa \left(\frac{1}{J1} + \frac{1}{J2}\right)}$

 κ : Torsional stiffness of the coupling and feed screw [N·m/rad]

J1: Moment of inertia of driving side [kg·m²] J2: Moment of inertia of driven side [kg·m²]

Torsional spring constant of coupling and feed screw κ [N·m/rad]

 $\frac{1}{\kappa} = \frac{1}{\kappa_c} + \frac{1}{\kappa_b}$

 κ c: Torsional spring constant of coupling [N·m/rad] κ b: Torsional spring constant of feed screw [N·m/rad]

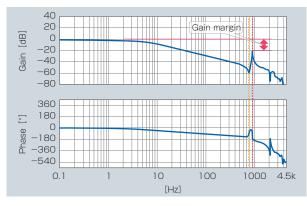
Jm: Moment of inertia of servomotor [kg·m²]

Jb: Moment of inertia of feedscrew [kg·m²] Jt: Moment of inertia of table [kg·m²] Jc: Moment of inertia of coupling [kq·m²]

```
Driving moment of inertia J1 [kg \cdot m^2]
```

```
J1 = Jm + \frac{Jc}{2}
```

2 Jc: Moment of inertia of coupling [kg·m²]


Driven moment of inertia J2 $[kg\!\cdot\!m^2]$

Moment of inertia of table Jt [kg·m²]

1.	_	$M \times P^2$
Jt	-	$4\pi^2$

M: Mass of table [kg] P: Lead of feed screw [m]

Since it is easier for oscillation to occur when the gain margin with natural frequency is 10 dB or lower, it is necessary for the natural frequency to be set high with a therefore higher gain margin at the design stage, or to adjust the natural frequency using the servomotor's electric tuning function (filter function) so as to avoid oscillation.

Selection Procedures

(1) Find the torque, Ta, applied to the coupling using the output capacity, P, of the driver and the usage rotation speed, n.

Ta
$$[N \cdot m] = 9550 \times \frac{P [kW]}{n [min^{-1}]}$$

(2) Determine the factor K from the load properties, and find the corrected torque, Td, applied to the coupling.

Td $[N \cdot m] = Ta [N \cdot m] \times K(Refer to the table below for values)$

	Constant	Vibrations: Small	Vibrations: Medium	
Load properties	\square	\bigwedge	fron	M
к	1.0	1.25	1.75	2.25

For servo motor drive, multiply the maximum torque, Ts, by the usage factor K = 1.2 to 1.5.

Td $[N \cdot m] = Ts [N \cdot m] \times (1.2 \sim 1.5)$

(3) Set the size so that the rated coupling torque, Tn, is higher than the corrected torque, Td.

$Tn [N \cdot m] \ge Td [N \cdot m]$

(4) Check that the mount shaft is no larger than the maximum bore diameter of the coupling.

* Contact Miki Pulley for assistance with any device experiencing extreme periodic vibrations.

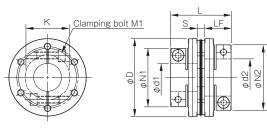
COUPLINGS ETP BUSHINGS ELECTROMAGNETIC CLUTCHES & BRAKES SPEED CHANGERS & REDUCERS INVERTERS LINEAR SHAFT DRIVES TORQUE LIMITERS ROSTA

SERIES

	Metal Disc Couplings SERVOFLEX
	High-rigidity Couplings SERVORIGID
Metal Co	Metal Slit Couplings HELI-CAL
ouplings	Metal Coil Spring Couplings BAUMANNFLEX
	Pin Bushing Couplings PARAFLEX
	Link Couplings SCHMIDT
	Dual Rubber Couplings STEPFLEX
Rubber ar	Jaw Couplings MIKI PULLEY STARFLEX
nd Plastic (Jaw Couplings SPRFLEX
Couplings	Plastic Bellows Couplings BELLOWFLEX
	Rubber and Plastic Couplings CENTAFLEX
мс	DELS
SF	c
SF	5
SF	F

SFM

SFH


SFM Models Clamping

Specifications

		Misalignment			Max. rotation	Torsional	Axial	Moment of	
Model	Rated torque [N•m]	Parallel [mm]	Angular [°]	Axial [mm]	speed [min ⁻¹]	stiffness [N•m/rad]	stiffness [N/mm]	inertia [kg•m²]	Mass [kg]
SFM-060SS- 🗆 B- 🗆 B-60N	60	0.02	1	± 0.3	24000	104000	399	0.22 × 10 ⁻³	0.52
SFM-060SS- 🗆 B- 🗆 B-80N	80	0.02	1	± 0.3	24000	104000	399	0.23 × 10 ⁻³	0.49
SFM-070SS- 🗆 B- 🗆 B-90N	90	0.02	1	± 0.5	24000	240000	484	0.40 × 10 ⁻³	0.72
SFM-070SS- 🗆 B- 🗆 B-100N	100	0.02	1	± 0.5	24000	240000	484	0.42 × 10 ⁻³	0.67
SFM-080SS- 🗆 B- 🗆 B-150N	150	0.02	1	± 0.5	24000	120000	96	0.79 × 10 ⁻³	1.04
SFM-080SS- 🗆 B- 🗆 B-200N	200	0.02	1	± 0.5	24000	310000	546	1.25 × 10 ⁻³	1.40
SFM-090SS- 🗆 B- 🗆 B-250N	250	0.02	1	± 0.6	24000	520000	321	1.54 × 10 ⁻³	1.62
SFM-090SS- 🗌 B- 🗌 B-300N	300	0.02	1	± 0.6	24000	520000	321	1.58 × 10 ⁻³	1.53
SFM-100SS- 🗌 B- 🗌 B-450N	450	0.02	1	± 0.65	20000	740000	540	3.27 × 10 ⁻³	2.53
SFM-120SS- 🗆 B- 🗆 B-600N	600	0.02	1	± 0.8	20000	970000	360	6.90 × 10 ⁻³	3.78

* Torsional stiffness values given are calculated for the element alone. * The moment of inertia and mass are measured for the maximum bore diameter.

Dimensions

Model	d1 [mm]	d2 [mm]	D [mm]	L [mm]	N1 • N 2 [mm]		S [mm]	K [mm]		M1 • M2 Tightening torque [N • m]
	12 • 14 • 15 • 16 • 17 • 18 • 19	12 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 22			44				2-M6	14
SFM-060SS- 🗆 B- 🗆 B-60N	-	24 • 25 • 28	58	53.4	48	24	5.4	32	2-M5	7
	-	30			52				2-1015	1
	20 • 22	20 • 22			44				2-M6	14
SFM-060SS- 🗆 B- 🗆 B-80N	24 • 25 • 28	24 • 25 • 28	58	53.4	48	24	5.4	32	2-M5	7
	30	30			52				2 1015	1
SFM-070SS- 🗆 B- 🗆 B-90N	18 • 19	18 • 19 • 20 • 22 • 24 • 25	68	55.9	47	25	5.9	38	2-M6	14
51 11-07055	-	28 • 30 • 32 • 35	00	55.7	56	25	5.7	50	2 10	17
SFM-070SS- 🗆 B- 🗆 B-100N	20 • 22 • 24 • 25	20 • 22 • 24 • 25	68	55.9	47	25	5.9	38	2-M6	14
	28 • 30 • 32 • 35	28 • 30 • 32 • 35	00	55.5	56	23	5.5	50	2 1110	
SFM-080SS- 🗌 B- 🗌 B-150N	22 • 24 • 25	22 • 24 • 25	78	68.3	53	30	8.3	37	2-M8	34
	28 • 30 • 32 • 35	28 • 30 • 32 • 35	70		56				2-M6	14
	22 • 24 • 25	22 • 24 • 25			53					
SFM-080SS- 🗌 B- 🗌 B-200N	28 • 30 • 32 • 35	28 • 30 • 32 • 35	78	67.7	70	30	7.7	42	2-M8	34
	38	38			74					
SFM-090SS- 🗌 B- 🗌 B-250N	25 • 28	25 • 28 • 30 • 32	88	68.3	66	30	8.3	50	2-M8	34
	-	35 • 38 • 40 • 42	00	00.5	74	50	0.5	50	2 1110	5.
SFM-090SS- 🗆 B- 🗆 B-300N	30 • 32	30 • 32	88	68.3	66	30	8.3	50	2-M8	34
	35 • 38 • 40 • 42	35 • 38 • 40 • 42	00	00.5	74	50	0.5	50	2 1110	5.
SFM-100SS- 🗆 B- 🗆 B-450N	32 • 35 • 38 • 40 • 42 • 45 • 48	32 • 35 • 38 • 40 • 42 • 45 • 48	98	90.2	84	40	10.2	56	2-M10	68
SFM-120SS- 🗆 B- 🗆 B-600N	32 • 35 • 38 • 40 • 42 • 45	32 • 35 • 38 • 40 • 42 • 45	118	90.2	84	40	10.2	68	2-M10	68
3FM-12033- C B- C B-000N	48 • 50 • 55	48 • 50 • 55	110	50.2	100	-+0	10.2	00	2-10110	00

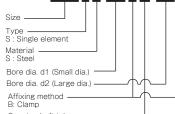
* Nominal diameter of clamping bolt M1/M2 is given as number of bolts - nominal diameter, and the number is the number for one hub.

075

Standard Bore Diameter

								Stan	dard b	ore di	amet	er d'	I∙d2 [mm]									
Model	Nominal diameter	12	14	15	16	17	18	19	20	22	24	25	28	30	32	35	38	40	42	45	48	50	55
	d1	٠	٠	٠	٠	٠	٠	٠															
SFM-060SS- 🗆 B- 🗆 B-60N	d2	٠									٠												
SFM-060SS- 🗆 B- 🗆 B-80N	d1								•		٠	٠	٠	•									
51 M-00055- [] B- [] B-00N	d2																						
SFM-070SS- 🗆 B- 🗆 B-90N	d1						٠	٠															
	d2																						
SFM-070SS- 🗆 B- 🗆 B-100N	d1								•	•	•	•	•	•	•	•							
	d2																						
SFM-080SS- 🗆 B- 🗆 B-150N	d1									•	•	•	•	•	•	•							
	d2																						
SFM-080SS- 🗆 B- 🗆 B-200N	d1									•	•	•	•	•	•	•	•						
	d2																						
SFM-090SS- 🗆 B- 🗆 B-250N	d1											•	•										
	d2																						
SFM-090SS- 🗆 B- 🗆 B-300N	d1													•	•	•	٠	•	•				
	d2																						
SFM-100SS- 🗌 B- 🗌 B-450N	d1														•	•	•	•	•	•	•		
	d2															•							
SFM-120SS- 🗆 B- 🗆 B-600N	d1														•	•	•	•	•	•	٠	•	•
	d2														•	•	•	•	•	•	٠	•	•

* The bore diameters marked with
are supported as standard bore diameter.


Balance correction

Model	Model Balance		Supported rotational speed [min ⁻¹]								
(size)	classification	10000 or less	15000 or less	18000 or less	20000 or less	24000 or less					
SFM-060SS	G6.3 • G2.5	•	•	•	•	•					
SFM-070SS	G6.3 • G2.5	•	•	•	•	•					
SFM-080SS	G6.3 • G2.5	•	•	•	•	•					
SFM-090SS	G6.3 • G2.5	•	٠	•	•	•					
SFM-100SS	G6.3 • G2.5	•	•	•	•						
SFM-120SS	G6.3 • G2.5	•	•	•	•						

* We will perform balance correction for supported rotational speeds marked with ●.

How to Place an Order

SFM-080SS-25BK-30BK-200N-G2.5/24000

Countershaft tolerance Blank: h7, K: k6, M: m6, J: j6, S: 35^{+0.010}

 Supported rotational speed 10000 or less 15000 or less 20000 or less 24000 or less
 Balance classification G6.3, G2.5
 Nominal rated torque (see specifications table)

ue table)

MODELS

SFC	
SFS	
SFF	
SFM	
SFH	

Rubber and Plastic

CENTAFLEX

CO	UP	Ľ	Ν	G

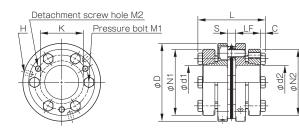
ETP BUSHINGS ELECTROMAGNETIC CLUTCHES & BRAKES SPEED CHANGERS & REDUCERS INVERTERS LINEAR SHAFT DRIVES TORQUE LIMITERS

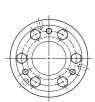
ROST

SERIES

Metal Disc Couplings SERVOFLEX

High-rigidity SERVORIGID Metal Slit Metal Couplings HELI-CAL Metal Coil Spring BAUMANNFLEX Pin Bushing PARAFLEX Link Couplings SCHMIDT Dual Rubber STEPFLEX Jaw Couplings MIKI PULLEY STARFLEX Jaw Couplings SPRFLEX **Plastic Bellows** BELLOWFLEX


SFM Models Wedge Coupling


Specifications

			Misalignment		Max. rotation	Torsional	Axial	Moment of	
Model	Rated torque [N•m]	Parallel [mm]	Angular [°]	Axial [mm]	speed [min ⁻¹]	stiffness [N•m/rad]	stiffness [N/mm]	inertia [kg•m²]	Mass [kg]
SFM-070SS- 🗆 K- 🗆 K-100N	100	0.02	1	± 0.5	24000	240000	484	0.66 × 10 ⁻³	0.92
SFM-080SS- 🗆 K- 🗆 K-150N	150	0.02	1	± 0.5	24000	120000	96	1.21 × 10 ⁻³	1.03
SFM-080SS- 🗆 K- 🗆 K-200N	200	0.02	1	± 0.5	24000	310000	546	1.11 × 10 ⁻³	1.26
SFM-090SS- 🗆 K- 🗆 K-300N	300	0.02	1	± 0.6	24000	520000	321	1.75 × 10 ⁻³	1.48
SFM-100SS- 🗆 K- 🗆 K-450N	450	0.02	1	± 0.65	20000	740000	540	2.56 × 10 ⁻³	1.87
SFM-120SS- 🗆 K- 🗆 K-600N	600	0.02	1	± 0.8	20000	970000	360	5.33 × 10 ⁻³	2.50
SFM-140SS- 🗆 K- 🗆 K-800N	800	0.02	1	± 1.0	20000	1400000	360	10.28 × 10 ⁻³	4.66
SFM-140SS- 🗆 K- 🗆 K-1000N	1000	0.02	1	± 1.0	20000	1400000	360	14.70 × 10 ⁻³	5.01

* Torsional stiffness values given are calculated for the element alone. * The moment of inertia and mass are measured for the maximum bore diameter.

Dimensions

Model	d1 [mm]	d2 [mm]	D [mm]	L [mm]	N1 • N 2 [mm]	LF [mm]	S [mm]	C [mm]	K [mm]	H [mm]		M1 Tightening torque [N • m]	M 2 Qty - Nominal dia.
SFM-070SS- 🗆 K- 🗆 K-100N	$ \begin{array}{r} 18 \cdot 19 \\ 20 \cdot 22 \cdot 24 \cdot 25 \\ 28 \cdot 30 \\ 32 \cdot 35 \end{array} $	18 • 19 20 • 22 • 24 • 25 28 • 30 32 • 35	68	62.9	53 58 63 68	23.5	5.9	5	38	3-5.1	6-M6	10	3-M6
SFM-080SS- 🗌 K- 🗌 K-150N	$ \begin{array}{r} 22 \cdot 24 \cdot 25 \\ 28 \cdot 30 \\ 32 \cdot 35 \\ - \end{array} $	22 • 24 • 25 28 • 30 32 • 35 38	78	69.3	58 63 68 73	25.5	8.3	5	37	4-5.1	4-M6	10	2-M6
SFM-080SS- 🗆 K- 🗆 K-200N	22 • 24 • 25 28 • 30 32 • 35 38	22 • 24 • 25 28 • 30 32 • 35 38	78	68.7	58 63 68 73	25.5	7.7	5	42	3-5.1	6-M6	10	3-M6
SFM-090SS- 🗆 K- 🗆 K-300N	$28 \cdot 30$ $32 \cdot 35$ $38 \cdot 40 \cdot 42$ 45	$28 \cdot 30$ $32 \cdot 35$ $38 \cdot 40 \cdot 42$ 45	88	69.3	63 68 73 78	25.5	8.3	5	50	3-6.8	6-M6	10	3-M6
SFM-100SS- 🗆 K- 🗆 K-450N	$ 48 32 \cdot 35 38 \cdot 40 \cdot 42 45 48 \cdot 50 $	48 32 • 35 38 • 40 • 42 45 48 • 50	98	75.2	83 68 73 78 83	27.5	10.2	5	56	3-6.8	6-M6	10	3-M6
SFM-120SS- 🗌 K- 🗌 K-600N	$ 35 38 \cdot 40 \cdot 42 45 48 \cdot 50 \cdot 52 55 60 \cdot 62 \cdot 65 - - - $	$ 35 38 \cdot 40 \cdot 42 45 48 \cdot 50 \cdot 52 55 60 \cdot 62 \cdot 65 70 $	118	75.2	68 73 78 83 88 98 108	27.5	10.2	5	68	3-6.8	6-M6	10	3-M6
SFM-14055- 🗆 K- 🗆 K-800N	35 • 38 40 • 42 • 45 - - - - -	$ 35 \cdot 38 \\ 40 \cdot 42 \cdot 45 \\ 48 \cdot 50 \cdot 52 \\ 55 \cdot 60 \\ 62 \cdot 65 \cdot 70 \\ 75 \cdot 80 $	138	94.6	83 88 98 108 118 128	36.5	10.6	5.5	78	3-8.6	6-M8	24	3-M8
SFM-140SS- 🗆 K- 🗆 K-1000N	48 • 50 • 52 55 • 60 62 • 65 • 70 75	48 • 50 • 52 55 • 60 62 • 65 • 70 75 • 80	138	94.6	98 108 118 128	36.5	10.6	5.5	78	3-8.6	6-M8	24	3-M8

* The nominal diameters of the pressure bolt M1 and detachment screw hole M2 are equal to the quantity minus the nominal diameter of the screw threads. The quantities of H, M1 and M2 are the same as the quantity for a hub on one side.

077

COUPLINGS

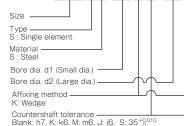
ELECTROMAGNETIC

SPEED CHANGERS

Standard Bore Diameter

	Standard bore diameter d1·d2 [mm]																								
Model	Nominal diameter	18	19	20	22	24	25	28	30	32	35	38	40	42	45	48	50	52	55	60	62	65	70	75	80
SFM-070SS- 🗆 K- 🗆 K-100N	d1	٠	۲	٠	۲	۲	۲	۲	٠	۲	٠														
3FM-07033 K K- 100N	d2	٠			٠			٠	٠	٠															
SFM-080SS- 🗆 K- 🗆 K-150N	d1				٠	٠		۲	٠	۲															
3FM-08033 K K- 130N	d2							٠																	
SFM-080SS- 🗆 K- 🗆 K-200N	d1				٠			۲	٠	٠															
3FM-06033 K K-200N	d2				٠			٠	٠																
	d1							۲	٠	٠	٠	٠	۲	٠	٠	٠									
SFM-090SS- 🗆 K- 🗆 K-300N	d2							٠	٠	٠				٠	٠										
SFM-100SS- 🗆 K- 🗆 K-450N	d1									٠	٠		۲	۲	٠	٠	٠								
5FM-10055- 🗆 K- 🗆 K-430N	d2									٠		٠			٠		٠								
SFM-120SS- 🗆 K- 🗆 K-600N	d1										٠		۲	۲	٠	٠	٠	۲	٠	٠	٠	٠			
5FM-12055- C K- C K-000N	d2											٠		٠	٠		٠	٠			٠		٠		
	d1										٠	۲	۲	۲	٠										
SFM-140SS- 🗆 K- 🗆 K-800N	d2											٠	٠	٠	٠		٠					٠	٠	٠	٠
SFM-140SS- 🗆 K- 🗆 K-1000N	d1															٠	٠	٠	٠	٠	٠	٠	٠	٠	
3FM-14033- L K- L K-1000N	d2																٠	٠	٠			٠	٠	٠	٠

The bore diameters marked with
are supported as standard bore diameter


Balance correction

Model	Balance		Sup	ported rotational speed [mi	n-1]	
(size)	classification	10000 or less	15000 or less	18000 or less	20000 or less	24000 or less
SFM-070SS	G6.3 • G2.5	•	•	•	•	•
SFM-080SS	G6.3 • G2.5	•	•	•	•	•
SFM-090SS	G6.3 • G2.5	•	٠	•	•	•
SFM-100SS	G6.3 • G2.5	•	•	•	•	
SFM-120SS	G6.3 • G2.5	•	•	•	•	
SFM-140SS	G6.3 • G2.5	•	•	•	•	

* We will perform balance correction for supported rotational speeds marked with ●

How to Place an Order

SFM-080SS-25KK-30KK-200N-G2.5/24000

Balance classification G6.3, G2.5

Supported rotational speed 10000 or less 15000 or less 18000 or less 20000 or less 24000 or less Nominal rated torque (see specifications table)

BELLOWFLEX **Rubber and Plastic** CENTAFLEX

MODELS

SFC				
SFS	 	 		
SFF	 	 		
SFM				
SFH				

HELI-CAL
Metal Coil Spring Couplings BAUMANNFLEX
Pin Bushing Couplings

Metal Disc Couplings SERVOFLEX

High-rigidity

SERVORIGID Metal Slit

SERIES

Metal Couplings

PARAFLEX

Link Couplings SCHMIDT

Dual Rubber STEPFLEX

Jaw Couplings MIKI PULLEY

STARFLEX

Jaw Couplings SPRFLEX

Plastic Bellows

www.mikipulley.co.jp

SFM Models

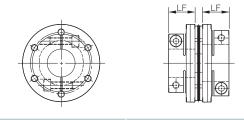
Items Checked for Design Purposes

Special Items to Take Note of

You should note the following to prevent any problems.

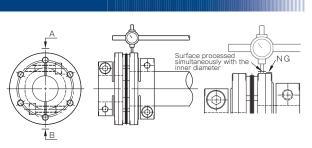
(1) Always be careful of parallel, angular, and axial misalignment.

(2) Always tighten bolts with the specified torque.


Precautions for Handling

Couplings are assembled at high accuracy using a special mounting jig to ensure accurate concentricity of left and right internal diameters. Take extra precautions when handling couplings, should strong shocks be given on couplings, it may affect mounting accuracy and cause the parts to break during use.

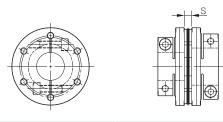
- (1) Couplings are designed for use within an operating temperature range of -30° C to 120°C. Although the couplings are designed to be waterproof and oilproof, do not subject them to excessive amounts of water and oil as it may cause part deterioration.
- (2) Handle the element with care as it is made of a thin stainless steel metal disc, also making sure to be careful so as not to injure yourself.
- (3) Do not tighten up clamping bolts or pressure bolts until after inserting the mounting shaft.
- (4) Mounting shaft is assumed to be a round shaft.


Mounting (Clamping)

- (1) Check that coupling clamping bolts have been loosened and remove any rust, dust, oil residue, etc. from the inner diameter surfaces of the shaft and couplings. In particular, never allow oil or grease containing antifriction or other agent (molybdenum-, silicon-, or fluorine-based), which would dramatically affect the friction coefficient, to contact the surface.
- (2) Be careful when inserting the couplings into the shaft so as not to apply excessive force of compression or tensile force to the element.
- (3) Ensure that the length of the coupling inserted onto the motor shaft touches the shaft for the entire length of the clamping hub of the coupling (LF dimension), as shown in the diagram below, and position it so that it does not interfere with the elements, spacers or the other shaft. Then temporarily tighten the two clamping bolts, tightening them alternately until the coupling cannot be manually rotated.

Model (Clamping)	LF dimension [mm]
SFM-060	24
SFM-070	25
SFM-080	30
SFM-090	30
SFM-100	40
SFM-120	40

(4) Hold a dial gauge against the outer diameter of the clamping hub on the motor shaft side (the surface processed simultaneously with the inner diameter), and then tighten the two clamping bolts while turning the motor shaft by hand and adjusting the difference in the runout values at A and B in the figure below is 0.02 mm or less (and as close to 0 as possible).



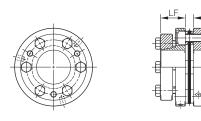
(5) Alternately fasten the two clamping bolts as you adjust them, and finish by tightening both bolts to the appropriate tightening torque of the following table, using a calibrated torque wrench.

Since it is fastened by two clamping bolts, tightening one bolt before the other will place more than the prescribed axial force on the bolt tightened first when the other bolt is tightened. Be sure to tighten them alternately, a little at a time.

Clamping bolt nominal diameter	Tightening torque [N·m]
M5	7
M6	14
M8	34
M10	68

- (6) Mount the motor, to which the coupling has already been mounted, on the body of the machinery. At that time, adjust the motor mounting position (centering location) while inserting the coupling onto the driven shaft, being alert to undue forces on the element such as compression or pulling.
- (7) Make the length of the driven shaft inserted into the coupling connect to the shaft for the length of the LF dimension (described above), alternately tighten the two clamping bolts, and provisionally tighten enough that the coupling cannot be manually rotated.
- (8) In addition, keep the dimension between clamping hub faces (the S dimension in the diagram) to within the allowable misalignment of the axial displacement with respect to a reference value. Note that the tolerance values were calculated based on the assumption that both the level of parallel misalignment and angular deflection are zero. Adjust to keep this value as low as possible.

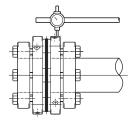
Model (Clamping)	S dimension [mm]
SFM-060	5.4
SFM-070	5.9
SFM-080 (-150N)	8.3
SFM-080 (-200N)	7.7
SFM-090	8.3
SFM-100	10.2
SFM-120	10.2


- (9) Adjust runout using the same procedure as for the motor shaft side, and then finish by tightening the clamping bolts to the appropriate tightening torque.
- (10) To protect against initial loosening of the clamping bolt, we recommend operating for a set period of time and then retightening to the appropriate tightening torque.

COUPLINGS

ETP BUSHINGS

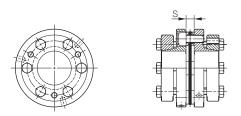
Mounting (Wedge Coupling)


- (1) Check that coupling pressure bolts have been loosened and remove any rust, dust, oil residue, etc. from the inner diameter surfaces of the shaft and couplings. In particular, never allow oil or grease containing antifriction or other agent (molybdenum-, silicon-, or fluorine-based), which would dramatically affect the friction coefficient, to contact the surface.
- (2) Be careful when inserting the couplings into the shaft so as not to apply excessive force of compression or tensile force to the element.
- (3) Insert each coupling far enough onto the motor shaft that it touches the shaft along the entire length of the coupling flange (LF dimension), as shown in the diagram below. Position it so that it does not interfere with the elements, spacers or the other shaft and then hold it in place.

Model (Wedge coupling)	LF dimension [mm]
SFM-070	23.5
SFM-080	25.5
SFM-090	25.5
SFM-100	27.5
SFM-120	27.5
SFM-140	36.5

(4) Using the drive pin hole, lightly tighten the pressure bolt on the diagonal.

(5) Touch the dial gauge to the flange end face or outer diameter on the motor shaft side. Then, while gently rotating the motor shaft manually, adjust the flange periphery and end face by hammering until the runout is as close to zero as possible.



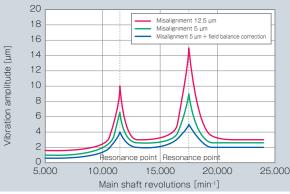
(6) Sequentially fasten the pressure bolts while doing hammering adjustments, and then use a calibrated torque wrench to tighten all the pressure bolts to the appropriate tightening torques below. See the following figure for the tightening procedure for the pressure bolts. Try to tighten them evenly.

Pressure bolt nominal diameter	Tightening torque [N·m]
M6	10
M8	24

- (7) Tighten the motor shaft's pressure bolts at the nominal torque and check that the runout value is low.
- (8) Mount the motor, to which the coupling has already been mounted, on the body of the machinery. At that time, adjust the motor mounting position (centering location) while inserting the coupling onto the driven shaft, being alert to any deformation of the disc, etc. Make the length of the driven shaft inserted into the coupling be in contact with the entire length of the coupling flange (LF dimension), and maintain it at that position.

(9) Keep the width of the dimension between flange faces (S dimension in the diagram) within the allowable error range for axial misalignment with respect to the reference value. Note that the tolerance values were calculated based on the assumption that both the level of parallel misalignment and angular deflection are zero. Adjust to keep this value as low as possible.

Model	S dimension [mm]
SFM-070	5.9
SFM-080 (-150N)	8.3
SFM-080 (-200N)	7.7
SFM-090	8.3
SFM-100	10.2
SFM-120	10.2
SFM-140	10.6


- (10) Tighten the pressure bolts on the driven shaft in order using the same procedure as for the pressure bolts on the motor shaft side, and then finish by tightening to the appropriate tightening torque.
- (11) To protect against initial loosening of the pressure bolt, we recommend operating for a set period of time and then retightening to the appropriate tightening torque.

Important when Combining for High-Revolution (Main Shaft) Applications

For high-revolution applications such as a machining center main shaft, vibration can become an issue.

One cause of vibration at high revolutions is misalignment of shaft axes when combining the spindle motor and the main shaft, with vibration still occurring even with balance correction of the coupling itself.

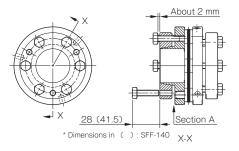
While it is possible to allow for some misalignment occurring as parallel, angular, or axial displacement, it is particularly important to take care with misalignment with high-revolution applications. Be sure to perform axial adjustment during assembly and field balance correction after assembly.

*Couplings used in the above measurements had undergone balance correction on an individual basis.

CLUTCHES & BRAKES
SPEED CHANGERS
& REDUCERS
INVERTERS
LINEAR SHAFT DRIVES
TORQUE LIMITERS
ROSTA
SERIES
MASHA Dirc

	Metal Disc Couplings SERVOFLEX
	High-rigidity Couplings SERVORIGID
Metal Co	Metal Slit Couplings HELI-CAL
ouplings	Metal Coil Spring Couplings BAUMANNFLEX
	Pin Bushing Couplings PARAFLEX
	Link Couplings SCHMIDT
	Dual Rubber Couplings STEPFLEX
Rubber a	Jaw Couplings MIKI PULLEY STARFLEX
nd Plastic (Jaw Couplings SPRFLEX
Couplings	Plastic Bellows Couplings BELLOWFLEX
	Rubber and Plastic Couplings CENTAFLEX
МС	DELS
SF	C
SF	5
SFI	F

SFM


SFH

SFM Models

Items Checked for Design Purposes

Removal

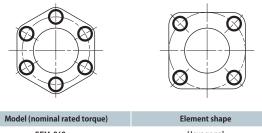
- (1) Check to confirm that there is no torque or axial load being applied to the coupling. There may be cases where a torque is applied to the coupling, particularly when the safety brake is being used. Make sure to verify that this is not occurring before removing parts.
- (2) Loosen all the clamping bolts or pressure bolts (loosen pressure bolts until the gap between bearing seat and sleeve is about 2mm).
- (3) For clamping type, release the fastening to the shaft by sufficiently loosening all clamping bolts. Note that grease has been applied to the clamping bolts, so do not remove them all the way.
- (4) In the case of a wedge coupling system that tightens a pressure bolt from the axial direction, the sleeve will be self-locking, so the coupling between flange and shaft cannot be released simply by loosening the pressure bolt. (Note that in some cases, a coupling can be released by loosening a pressure bolt.) For that reason, when designing devices, a space must be installed for inserting a detachment screw.

- (5) Pull out three of the pressure bolts (two 080, 150 N) loosened in step (2), insert them into the detachment screw holes on the sleeve, and tighten them in order, a little at a time. The coupling will be released.
- (6) If there is no space in the axial direction, insert the tip of a flathead screwdriver or the like into part A and lightly tap perpendicular to the shaft or use it as a lever to pry off the coupling. Use appropriate caution to not damage the coupling body or the pressure bolts.

Suitable Torque Screwdriver/Torque Wrench ■ Clamping bolt

Nominal bolt diameter	Tightening torque [N • m]	Torque screwdriver/ wrench	Hexagon bit/ head	Coupling size
М5	7	N10LTDK	SB 4mm	060
M6	14	N25LCK	25HCK 5mm	060 · 070 · 080
M8	34	N50LCK	50HCK 6mm	080 • 090
M10	68	N100SPCK $ imes$ 68N \cdot m	100HCK 8mm	100 • 120

* Torque screwdriver (wrench)/bit (head) models are those of Nakamura Mfg. Co., Ltd.


Pressure bolt

Nominal bolt diameter	Tightening torque [N • m]	Torque wrench	Spanner head	Coupling size
M6	10	$\text{N12SPCK} \times 10\text{N} \boldsymbol{\cdot} \text{m}$	25SCK 10mm	$070 \sim 120$
M8	24	$\text{N50SPCK} \times 24\text{N} \boldsymbol{\cdot} \text{m}$	50SCK 13mm	140

* Torque wrench/spanner head models are those of Nakamura Mfg. Co., Ltd.

Differences in Torsional Stiffness due to Element Shape

Elements used by SFM models may be either square or hexagonal. Since torque is transmitted by coupling the hubs to each other via the element, torsional stiffness is higher in couplings that use hexagonal elements transmitting torque with six bolts, at the expense of some flexibility. Choose your element shape accordingly.

Model (nominal rated torque)	Element shape
SFM-060	Hexagonal
SFM-070	Hexagonal
SFM-080 (-150N)	Square
SFM-080 (-200N)	Hexagonal
SFM-090	Hexagonal
SFM-100	Hexagonal
SFM-120	Hexagonal
SFM-140	Hexagonal

Clamping and Wedge Coupling in Combination

For the range of common sizes between clamping and wedge coupling (070 - 120), a common element is used per each size allowing you to use them in combination.

When specifying bore diameters in this instance, specify d1: clamping, d2: wedge coupling in that order, regardless of larger and smaller bore diameters.

Example) SFM-080SS-30B-25K-200N-G2.5/24000

Rated torques after combination are given for the clamping side. See the table below.

d1 clamping (desig	gnation B)	d2 wedge coupling (d	esignation K)	Rated torque
Model	Bore diameter range [mm]	Model	Bore diameter range [mm]	combination [N·m]
SFM-070 (-90N)	18 · 19	SFM-070 (-100N)	$18\sim35$	90
SFM-070 (-100N)	$20 \sim 35$	SFM-070 (-100N)	$18 \sim 35$	100
SFM-080 (-150N)	$22 \sim 35$	SFM-080 (-150N)	$22 \sim 38$	150
SFM-080 (-200N)	22~38	SFM-080 (-200N)	$22 \sim 38$	200
SFM-090 (-250N)	25 · 28	SFM-090 (-300N)	$28 \sim 48$	250
SFM-090 (-300N)	30~42	SFM-090 (-300N)	$28 \sim 48$	300
SFM-100 (-450N)	32~48	SFM-100 (-450N)	$32\sim50$	450
SFM-120 (-600N)	32~55	SFM-120 (-600N)	$35 \sim 70$	600

081

Selection Procedures

(1) Find the torque, Ta, applied to the coupling using the output capacity, P, of the driver and the usage rotation speed, n.

Ta [N·m] = 9550 ×
$$\frac{P [kW]}{n [min^{-1}]}$$

(2) Determine the factor K from the load properties, and find the corrected torque, Td, applied to the coupling.

Td $[N \cdot m] = Ta [N \cdot m] \times K$ (Refer to the table below for values)

Load properties	Constant	Vibrations: Small	Vibrations: Medium	Vibrations: Large
		\bigwedge	pm	MA
)	/ • •
к	1.0	1.25	1.75	2.25

For servo motor drive, multiply the maximum torque, Ts, by the usage factor $K=1.2 \mbox{ to } 1.5.$

Td $[N \cdot m] = Ts [N \cdot m] \times (1.2 \sim 1.5)$

For high-revolution applications such as a machining center main shaft, it is necessary to set a high safety factor unlike common feed screw systems.

Multiply the maximum torque of spindle motor: Ts by the service factor: K=3 to 3.6.

Td $[N \cdot m] = Ts [N \cdot m] \times (3 \sim 3.6)$

(3) Set the size so that the rated coupling torque, Tn, is higher than the corrected torque, Td.

$Tn [N \cdot m] \ge Td [N \cdot m]$

- (4) Check that the mount shaft is no larger than the maximum bore diameter of the coupling.
- * Contact Miki Pulley for assistance with any device experiencing extreme periodic vibrations.

COUPLINGS

ETP BUSHINGS

ELECTROMAGNETIC CLUTCHES & BRAKES SPEED CHANGERS & REDUCERS

INVERTERS

LINEAR SHAFT DRIVES

ORQUE LIMITERS

ROSTA

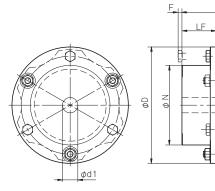
SERIES

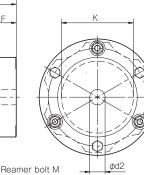
	Metal Disc Couplings SERVOFLEX
	High-rigidity Couplings SERVORIGID
Metal C	Metal Slit Couplings HELI-CAL
ouplings	Metal Coil Spring Couplings BAUMANNFLEX
	Pin Bushing Couplings PARAFLEX
	Link Couplings SCHMIDT
	Dual Rubber Couplings STEPFLEX
Rubber ai	Jaw Couplings MIKI PULLEY STARFLEX
nd Plastic (Jaw Couplings SPRFLEX
Couplings	Plastic Bellows Couplings BELLOWFLEX
	Rubber and Plastic Couplings CENTAFLEX
MC	DELS
SF	2

SFC														
SFS	 													
SFF														
SFM	 	 			 •	•		•		•	•	•	•	•
SFH	 					• •								

SFH(S) Types Single Element Type

Specification (SFH- 🗌 S) Pilot Bore/Key or Set Screw


Rate	Rated	Misalig	Inment	Max. rotation	Torsional			
Model	torque [N·m]	Angular [°]	Axial [mm]	speed [min ⁻¹]	stiffness [N·m/rad]	Axial stiffness [N/mm]	Moment of inertia [kg·m²]	Mass [kg]
SFH-150S	1000	1	± 0.4	5900	1500000	244	12.60 × 10 ⁻³	4.71
SFH-170S	1300	1	± 0.5	5100	2840000	224	26.88 × 10 ⁻³	7.52
SFH-190S	2000	1	± 0.5	4700	3400000	244	43.82 × 10 ⁻³	10.57
SFH-210S	4000	1	± 0.55	4300	4680000	508	68.48 × 10 ⁻³	13.78
SFH-220S	5000	1	± 0.6	4000	5940000	448	102.53 × 10 ⁻³	18.25
SFH-260S	8000	1	± 0.7	3400	10780000	612	233.86 × 10 ⁻³	29.66


S LF

Max. rotation speed does not take into account dynamic balance

* The moment of inertia and mass are measured for the maximum bore diameter.

Dimensions (SFH- 🗌 S) Pilot Bore/Key or Set Screw

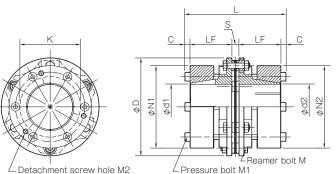
Model		d1·d2			N		LF	c	F	к	м
Model	Pilot bore	Min.	Max.	D	N	L	LF	3	r	ĸ	IVI
SFH-150S	20	22	70	152	104	101	45	11	5	94	6-M8 × 36
SFH-170S	25	28	80	178	118	124	55	14	6	108	6-M10 × 45
SFH-190S	30	32	85	190	126	145	65	15	10	116	6-M12 × 54
SFH-210S	35	38	90	210	130	165	75	15	8	124	6-M16 × 60
SFH-220S	45	48	100	225	144	200	90	20	- 2	132	6-M16 × 60
SFH-260S	50	55	115	262	166	223	100	23	11	150	6-M20 × 80
	1.	e				1 1.000					

Pilot bores are to be drilled into the part. See the standard hole-drilling standards of P.86 for information on bore drilling.
 The nominal diameter of the reamer bolt is equal to the quantity minus the nominal diameter of the screw threads times the nominal length.

How to Place an Order

SFH-150S-38H-38H

-Bore diameter: d1 (Small diameter) - d2 (Large diameter) Blank: Pilot bore Type: S Single element Size


Bore specifications Blank : Compliant with the old JIS standards (class 2) E9 H: Compliant with JIS standards H9 N: Compliant with motor standards

Specification (SFH- \Box S- \Box K- \Box K) Frictional Coupling

	Rated	Misalig	nment	Max.	Torsional	Axial	Moment of	
Model	torque [N·m]	Angular [°]	Axial [mm]	rotation speed [min ⁻¹]	stiffness [N·m/rad]	stiffness [N/mm]	inertia [kg·m²]	Mass [kg]
SFH-150S	1000	1	± 0.4	5900	1500000	244	25.14 × 10 ⁻³	8.95
SFH-170S	1300	1	± 0.5	5100	2840000	224	47.90 × 10 ⁻³	12.53
SFH-190S	2000	1	± 0.5	4700	3400000	244	60.40 × 10 ⁻³	14.21
SFH-210S	4000	1	± 0.55	4300	4680000	508	80.50 × 10 ⁻³	16.12

* Max. rotation speed does not take into account dynamic balance.
 * The moment of inertia and mass in the table are measured for the maximum bore diameter.

Dimensions (SFH- C S- K- K) Frictional Coupling

- Detachment screw hole M2

		<i>L</i>	- Detachment screw ht	DIE IVIZ	- Pie	ssure boit					Unit [mm]
Model	D	L	d1 • d2	N1 • N2	LF	S	с	К	М	M1	M2
SFH-150S	152	157	38 • 40 • 42 • 45 • 48 • 50	108	65	11	8	94	6-M8 × 36	6-M8 × 60	3-M8
3FH-1303	152	157	55 • 56 • 60 • 65 • 70	128	05		0	54	0-1010 × 50	0-1010 × 00	3-1010
		178 160	38 • 40 • 42 • 45 • 48 • 50	108		14 8			6-M10 × 45	6-M8 × 60	
SFH-170S	SFH-170S 178 160		55 • 56 • 60 • 65 • 70	128	65		8	108			3-M8
			75 • 80	148							
			38 • 40 • 42 • 45 • 48 • 50	108			10	116	6-M12 × 54	6-M10 × 65	
SFH-190S	190	175	55 • 56 • 60 • 65 • 70	128	70 15	15					3-M10
			75 • 80 • 85	148							
	SFH-210S 210 18		38 • 40 • 42 • 45 • 48 • 50	108							
SFH-210S		210 181	210 181	55 • 56 • 60 • 65 • 70	128	73	15	10	124	6-M16 × 60	6-M10 × 65
			75 • 80 • 85 • 90	148							

* The nominal diameters of each bolt and tap are equal to the quantity minus the nominal diameter of the screw threads times the nominal length. The quantities for the pressure bolt M1 and detachment screw hole M2 are quantities for the hub on one side.

Standard Bore Diameter

Model		Standard bore diameter d1, d2 [mm]														
	38	40	42	45	48	50	55	56	60	65	70	75	80	85	90	
SFH-150S	•	٠	٠	٠	•	•	٠	•	•	•	•					
SFH-170S	1100	1200	1250	•	•	•	•	•	•	•	•	•	•			
SFH-190S	1800	1900	٠	•	•	•	•	•	•	•	•	•	٠	•		
SFH-210S	1800	1900	2000	2150	2300	2400	2600	2650	2850	3100	3350	3600	3800	•	٠	
* The bore diameters marked with • or numbers are supported as standard bore diameter.																

* Bore diameters whose fields contain numbers are restricted in their rated torque by the holding power of the shaft connection component because the bore diameter is small. The numbers indicate the rated torque value [N·m].

How to Place an Order

SFH-1	50S-	38K	K-4	42KK

Countershaft tolerance Blank: h7 (h6 or g6) K: k6 M: m6 J:j6

Web code

COUPLINGS

ETP BUSHINGS
ELECTROMAGNETIC
CLUTCHES & BRAKES
SPEED CHANGERS
& REDUCERS
INVERTERS
INVERIERS
LINEAR SHAFT DRIVES

SERIES

	Metal Disc Couplings SERVOFLEX
	High-rigidity Couplings SERVORIGID
	Metal Slit Couplings HELI-CAL
:	Metal Coil Spring Couplings BAUMANNFLEX
	Pin Bushing Couplings PARAFLEX
	Link Couplings SCHMIDT
	Dual Rubber Couplings STEPFLEX
	Jaw Couplings MIKI PULLEY STARFLEX
	Jaw Couplings SPRFLEX
	Plastic Bellows Couplings BELLOWFLEX
	Rubber and Plastic

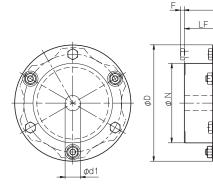
		CENTAFLEX
	мс	DDELS
1		

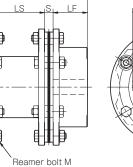
SFC							
SFS	 	 	 	 	 	 	
SFF		 		 	 	 	
SFM	 	 	 	 	 	 	
SFH							

A006

SFH(G) Types Double Element/Floating Shaft Type

Specification (SFH- \Box G) Pilot Bore/Key or Set Screw

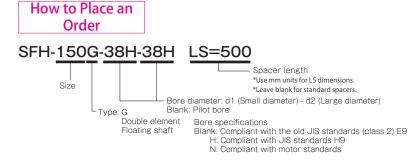

	Rated		Misalignment		Max.	Torsional	Axial			
Model	torque [N·m]	Parallel [mm]	Angular [°]	Axial [mm]	rotation speed [min ⁻¹]	stiffness [N·m/rad]	stiffness [N/mm]	Moment of inertia [kg·m²]	Mass [kg]	
SFH-150G	1000	1.4	1 (On one side)	± 0.8	5900	750000	122	21.87 × 10 ⁻³	8.72	
SFH-170G	1300	1.6	1 (On one side)	± 1.0	5100	1420000	112	51.07 × 10 ⁻³	13.94	
SFH-190G	2000	2.0	1 (On one side)	± 1.0	4700	1700000	122	81.58 × 10 ⁻³	19.51	
SFH-210G	4000	2.1	1 (On one side)	± 1.1	4300	2340000	254	125.50 × 10 ⁻³	24.26	
SFH-220G	5000	2.3	1 (On one side)	± 1.2	4000	2970000	224	176.91 × 10 ⁻³	30.27	
SFH-260G	8000	2.9	1 (On one side)	± 1.4	3400	5390000	306	433.47 × 10 ⁻³	53.11	


S

* Max. rotation speed does not take into account dynamic balance.

* The moment of inertia and mass are measured for the maximum bore diameter.

Dimensions (SFH- 🗆 G) Pilot Bore/Key or Set Screw


Unit [mm]

Model		d1·d2		D	N		LF	LS	ç		к	м
Model	Pilot bore	Min.	Max.	U	IN	L	LF	LS	3	r	ĸ	IVI
SFH-150G	20	22	70	152	104	182	45	70	11	5	94	12-M8 × 36
SFH-170G	25	28	80	178	118	218	55	80	14	б	108	12-M10 × 45
SFH-190G	30	32	85	190	126	260	65	100	15	10	116	12-M12 × 54
SFH-210G	35	38	90	210	130	290	75	110	15	8	124	12-M16 × 60
SFH-220G	45	48	100	225	144	335	90	115	20	- 2	132	12-M16 × 60
SFH-260G	50	55	115	262	166	391	100	145	23	11	150	12-M20 × 80

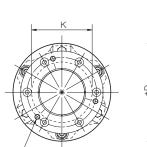
* Pilot bores are to be drilled into the part. See the standard hole-drilling standards of P.86 for information on bore drilling.
 * If you require a product with an LS dimension that exceeds those above, contact Miki Pulley with your required dimension [mm]. Please contact Miki Pulley for assistance if the LS dimension is less than those above or if LS

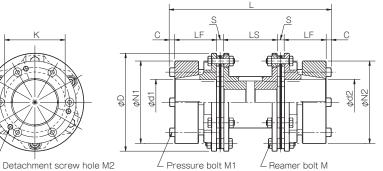
 1000.

* The nominal diameter of the reamer bolt is equal to the quantity minus the nominal diameter of the screw threads times the nominal length.

Maximum LS Dimension When Used Vertically

Model	LS [mm]
SFH-150G	1100
SFH-170G	800
SFH-190G	900
SFH-210G	2000
SFH-220G	1900
SFH-260G	2500


* When considering vertical use and the LS dimension is greater than that in the above table, consult Miki Pulley.


Specification (SFH- 🗆 G- 🗆 K- 🗆 K) Frictional Coupling

	Rated		Misalignment		Max.	Torsional	Axial	Moment of		
Model	torque [N·m]	Parallel [mm]	Angular [°]	Axial [mm]	rotation speed [min ⁻¹]	stiffness [N·m/rad]	stiffness [N/mm]	inertia [kg·m²]	Mass [kg]	
SFH-150G	1000	1.4	1 (On one side)	± 0.8	5900	750000	122	34.41 × 10 ⁻³	12.96	
SFH-170G	1300	1.6	1 (On one side)	± 1.0	5100	1420000	112	72.09 × 10 ⁻³	18.95	
SFH-190G	2000	2.0	1 (On one side)	± 1.0	4700	1700000	122	98.15 × 10 ⁻³	23.14	
SFH-210G	4000	2.1	1 (On one side)	± 1.1	4300	2340000	254	137.53 × 10 ⁻³	26.61	

* Max. rotation speed does not take into account dynamic balance. * The moment of inertia and mass in the table are measured for the maximum bore diameter.

Dimensions (SFH- C G- K- K- K) Frictional Coupling

												Unit [mm]
Model	D	L	d1 • d2	N1 • N2	LF	LS	S	с	к	М	M1	M2
SFH-150G	152	238	38 • 40 • 42 • 45 • 48 • 50	108	65	70	11	8	94	12-M8 × 36	6-M8 × 60	3-M8
SFH-1506	152	238	55 • 56 • 60 • 65 • 70	128	00	70		0	94	12-1110 × 50	0-1010 × 00	2-110
			38 • 40 • 42 • 45 • 48 • 50	108								
SFH-170G	178	254	55 • 56 • 60 • 65 • 70	128	65	80	14	8	108	12-M10 × 45	6-M8 × 60	3-M8
			75•80	148								
			38 • 40 • 42 • 45 • 48 • 50	108								
SFH-190G	190	290	55•56•60•65•70	128	70	100	15	10	116	12-M12 × 54	6-M10 × 65	3-M10
			75 • 80 • 85	148								
			38 • 40 • 42 • 45 • 48 • 50	108								
SFH-210G	210	306	55•56•60•65•70	128	73	110	15	10	124	12-M16 × 60	6-M10 × 65	3-M10
			75 • 80 • 85 • 90	148								

* If you require a product with an LS dimension that exceeds those above, contact Miki Pulley with your required dimension [mm]. Please contact Miki Pulley for assistance if the LS dimension is less than those above or if LS \geq 1000.

* The nominal diameters of each bolt and tap are equal to the quantity minus the nominal diameter of the screw threads times the nominal length. The quantities for the pressure bolt M1 and detachment screw hole M2 are quantities for the hub on one side.

Standard Bore Diameter

						St	andard bo	re diamete	r d1, d2 [m	m]					
Model	38	40	42	45	48	50	55	56	60	65	70	75	80	85	90
SFH-150G	•	•	•	•	•	•	•	•	•	•	•				
SFH-170G	1100	1200	1250	•	•	•	٠	•	•	•	•	•	•		
SFH-190G	1800	1900	•	٠	٠	•	٠	•	•	•	•	•	٠	•	
SFH-210G	1800	1900	2000	2150	2300	2400	2600	2650	2850	3100	3350	3600	3800	•	•

* The bore diameters marked with
or numbers are supported as standard bore diameter.

* Bore diameters whose fields contain numbers are restricted in their rated torque by the holding power of the shaft connection component because the bore diameter is small. The numbers indicate the rated torque value [N·m].

How to Place an Order

SFH-150G-38KK-42KK LS=500 Spacer length

Affixing method K: Frictional coupling

*Use mm units for LS dimensions. *Leave blank for standard spacers. Countershaft tolerance Blank: h7 (h6 or g6) K: k6 M: m6 J:j6

Maximum LS Dimension When Used Vertically

Model	LS [mm]
SFH-150G	1100
SFH-170G	800
SFH-190G	900
SFH-210G	2000
* When considering vertical	use and the LS dimension is

When considering vertical use and the LS dimension is greater than that in the above table, consult Miki Pulley.

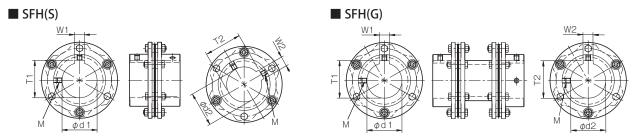
A006

COUPLINGS

ELECTROMAGNETIC
CLUTCHES & BRAKES
SPEED CHANGERS
& REDUCERS
INVERTERS
LINEAR SHAFT DRIVES
TORQUE LIMITERS

SERIES

	Metal Disc Couplings SERVOFLEX
Metal Couplings	High-rigidity Couplings SERVORIGID
	Metal Slit Couplings HELI-CAL
	Metal Coil Spring Couplings BAUMANNFLEX
	Pin Bushing Couplings PARAFLEX
	Link Couplings SCHMIDT
Rubber and Plastic Couplings	Dual Rubber Couplings STEPFLEX
	Jaw Couplings MIKI PULLEY STARFLEX
	Jaw Couplings SPRFLEX
	Plastic Bellows Couplings BELLOWFLEX
	Rubber and Plastic


MODELS

SFC										
SFS	 	 								
SFF	 	 								
SFM										
SFH	 	 				•		•	•	•

Web code

SFH Models

Standard Hole-Drilling Standards

Unit [mm]

Models o	ompliant with 1	the old JIS stan	dard (class 2) J	IS B 1301 1959	Models compliant with the new JIS standard (H9) JIS B 1301 1996				S B 1301 1996	6 Models compliant with the motor standard JIS C 4				
Nominal bore diameter	Bore diameter [d1 • d2]	Keyway width [W1·W2]	Keyway height [T1·T2]	Set screw hole [M]	Nominal bo diameter	Bore diameter [d1 • d2]	Keyway width [W1·W2]	Keyway height [T1·T2]	Set screw hole [M]	Nominal bo diameter	Bore diameter [d1 • d2]	Keyway width [W1·W2]	Keyway height [T1·T2]	Set screw hole [M]
bore ter	Tolerance H7	Tolerance E9	-	-	bore ter	Tolerance H7	Tolerance H9	-	-	bore ter	Tolerance G7, F7	Tolerance H9	-	-
22	22 ^{+ 0.021}	$7 ^{+0.061}_{+0.025}$	25.0 ^{+ 0.3}	2-M6	22H	22 ^{+ 0.021}	6 ^{+0.030}	24.8 ^{+0.3}	2-M5	-	-	-	-	-
24	24 ^{+ 0.021}	$7 ^{+ 0.061}_{+ 0.025}$	27.0 ^{+ 0.3}	2-M6	24H	24 ^{+ 0.021}	8 + 0.036	27.3 ^{+ 0.3} ₀	2-M6	24N	$24 \ ^{+ \ 0.028}_{+ \ 0.007}$	8 + 0.036	27.3 ^{+ 0.3}	2-M6
25	25 ^{+ 0.021}	$7 {}^{+ 0.061}_{+ 0.025}$	28.0 ^{+ 0.3}	2-M6	25H	$25 {}^{+ 0.021}_{0}$	$8^{+0.036}_{0}$	28.3 ^{+ 0.3}	2-M6	-	-	_	_	-
28	28 ^{+ 0.021}	$7 {}^{+ 0.061}_{+ 0.025}$	31.0 + 0.3	2-M6	28H	28 + 0.021	8 + 0.036	31.3 + 0.3	2-M6	28N	$28 \ ^{+ \ 0.028}_{+ \ 0.007}$	8 + 0.036	31.3 ^{+ 0.3}	2-M6
30	30 ^{+ 0.021}	$7 ^{+0.061}_{+0.025}$	33.0 ^{+ 0.3}	2-M6	30H	$30 {}^{+ 0.021}_{0}$	$8 {}^{+ 0.036}_{0}$	33.3 ^{+ 0.3}	2-M6	-	-	-	-	-
32	32 ^{+ 0.025}	$10 {}^{+ 0.061}_{+ 0.025}$	35.5 ^{+ 0.3}	2-M8	32H	32 ^{+ 0.025}	$10^{+0.036}_{0}$	35.3 ^{+ 0.3}	2-M8	-	-	-	-	-
35	35 ^{+ 0.025}	$10 \ \substack{+ \ 0.061 \\ + \ 0.025}$	38.5 ^{+ 0.3}	2-M8	35H	$35 {}^{+0.025}_{0}$	$10^{+0.036}_{0}$	38.3 ^{+ 0.3}	2-M8	-	-	-	-	-
38	38 + 0.025	$10 \ ^{+ \ 0.061}_{+ \ 0.025}$	41.5 + 0.3	2-M8	38H	38 + 0.025	$10^{+0.036}_{0}$	$41.3 {}^{+0.3}_{0}$	2-M8	38N	$38 {}^{+ 0.050}_{+ 0.025}$	$10^{+0.036}_{0}$	41.3 + 0.3	2-M8
40	$40 {}^{+ 0.025}_{0}$	$10 \ ^{+ \ 0.061}_{+ \ 0.025}$	43.5 + 0.3	2-M8	40H	$40 {}^{+ 0.025}_{0}$	$12^{+0.043}_{0}$	$43.3 {}^{+ 0.3}_{0}$	2-M8	-	-	-	-	-
42	42 ^{+ 0.025}	$12 \ ^{+ \ 0.075}_{+ \ 0.032}$	45.5 ^{+ 0.3}	2-M8	42H	42 + 0.025	$12^{+0.043}_{0}$	45.3 ^{+ 0.3}	2-M8	42N	$42 {}^{+ 0.050}_{+ 0.025}$	$12^{+0.043}_{0}$	45.3 ^{+ 0.3}	2-M8
45	$45 {}^{+ 0.025}_{0}$	$12 \ ^{+ \ 0.075}_{+ \ 0.032}$	48.5 + 0.3	2-M8	45H	$45 {}^{+ 0.025}_{0}$	$14^{+0.043}_{0}$	48.8 ^{+ 0.3}	2-M10	-	-	_	-	-
48	$48 {}^{+ 0.025}_{0}$	$12 \ ^{+ \ 0.075}_{+ \ 0.032}$	51.5 + 0.3	2-M8	48H	$48 {}^{+ 0.025}_{0}$	$14^{+0.043}_{0}$	51.8 ^{+ 0.3}	2-M10	48N	$48 \ ^{+ \ 0.050}_{+ \ 0.025}$	$14 {}^{+ 0.043}_{0}$	51.8 ^{+ 0.3}	2-M10
50	$50 {}^{+ 0.025}_{0}$	$12 \ ^{+ \ 0.075}_{+ \ 0.032}$	53.5 ^{+ 0.3}	2-M8	50H	$50 {}^{+ 0.025}_{0}$	$14^{+0.043}_{0}$	53.8 ^{+ 0.3}	2-M10	-	-	-	-	-
55	$55 \begin{array}{c} + 0.030 \\ 0 \end{array}$	$15 \ ^{+ \ 0.075}_{+ \ 0.032}$	60.0 ^{+ 0.3}	2-M10	55H	$55 {}^{+ 0.030}_{0}$	$16^{+0.043}_{0}$	59.3 ^{+ 0.3}	2-M10	55N	$55 \ ^{+ \ 0.060}_{+ \ 0.030}$	16 ^{+ 0.043}	59.3 ^{+ 0.3}	2-M10
56	$56 {}^{+ 0.030}_{0}$	$15 \ ^{+ \ 0.075}_{+ \ 0.032}$	61.0 ^{+ 0.3}	2-M10	56H	$56 {}^{+ 0.030}_{0}$	$16^{+0.043}_{0}$	60.3 ^{+ 0.3}	2-M10	-	-	-	-	-
60	60 ^{+ 0.030}	$15 \ ^{+ \ 0.075}_{+ \ 0.032}$	65.0 ^{+ 0.3}	2-M10	60H	$60^{+0.030}_{0}$	$18^{+0.043}_{0}$	64.4 ^{+ 0.3}	2-M10	60N	$60 \ ^{+ \ 0.060}_{+ \ 0.030}$	$18 {}^{+0.043}_{0}$	64.4 ^{+ 0.3}	2-M10
65	$65 \begin{array}{c} + 0.030 \\ 0 \end{array}$	$18 \ ^{+ \ 0.075}_{+ \ 0.032}$	71.0 + 0.3	2-M10	65H	$65 \begin{array}{c} + 0.030 \\ 0 \end{array}$	$18^{+0.043}_{0}$	69.4 ^{+ 0.3}	2-M10	65N	$65 \ ^{+ \ 0.060}_{+ \ 0.030}$	$18 {}^{+ 0.043}_{0}$	69.4 ^{+ 0.3}	2-M10
70	70 ^{+ 0.030}	$18 \ ^{+ \ 0.075}_{+ \ 0.032}$	76.0 ^{+ 0.3}	2-M10	70H	70 ^{+ 0.030}	20 ^{+ 0.052}	74.9 ^{+0.5} ₀	2-M10	-	-	-	-	-
75	$75 {}^{+ 0.030}_{0}$	$20 \ \substack{+ \ 0.092 \\ + \ 0.040}$	81.0 ^{+ 0.5}	2-M10	75H	$75 {}^{+ 0.030}_{0}$	$20^{+0.052}_{0}$	79.9 ^{+ 0.5}	2-M10	75N	$75 \ ^{+ \ 0.060}_{+ \ 0.030}$	$20 {}^{+0.052}_{0}$	79.9 ^{+ 0.5}	2-M10
80	$80 {}^{+ 0.030}_{0}$	$20 \ \substack{+ \ 0.092 \\ + \ 0.040}$	86.0 + 0.5	2-M10	80H	$80^{+0.030}_{0}$	22 ^{+ 0.052}	85.4 ^{+ 0.5}	2-M12	-	-	-	-	-
85	$85 {}^{+ 0.035}_{0}$	$24 \ ^{+ \ 0.092}_{+ \ 0.040}$	93.0 ^{+ 0.5}	2-M12	85H	$85 {}^{+ 0.035}_{0}$	22 ^{+ 0.052}	90.4 ^{+ 0.5}	2-M12	85N	$85 \ ^{+ \ 0.071}_{+ \ 0.036}$	22 ^{+ 0.052}	90.4 ^{+ 0.5}	2-M12
90	90 ^{+ 0.035}	$24 \ ^{+ \ 0.092}_{+ \ 0.040}$	98.0 ^{+ 0.5}	2-M12	90H	90 ^{+ 0.035}	25 ^{+ 0.052}	95.4 ^{+ 0.5}	2-M12	-	-	-	-	-
95	95 ^{+ 0.035}	$24 \ ^{+ \ 0.092}_{+ \ 0.040}$	103.0 + 0.5	2-M12	95H	$95 {}^{+ 0.035}_{0}$	$25 {}^{+ 0.052}_{0}$	100.4 $^{+0.5}_{0}$	2-M12	95N	$95 \ ^{+ \ 0.071}_{+ \ 0.036}$	$25 {}^{+ 0.052}_{0}$	100.4 + 0.5	2-M12
100	$100 {}^{+ 0.035}_{0}$	$28 \ ^{+ \ 0.092}_{+ \ 0.040}$	109.0 + 0.5	2-M12	100H	$100 {}^{+ 0.035}_{0}$	28 ^{+ 0.052}	$106.4^{+0.5}_{-0}$	2-M12	-	-	-	-	-
115	115 + 0.035	$32 \begin{array}{c} + 0.112 \\ + 0.050 \end{array}$	125.0 + 0.5	2-M12	115H	$115 {}^{+ 0.035}_{0}$	32 ^{+ 0.062}	122.4 + 0.5	2-M12	-	-	-	-	-

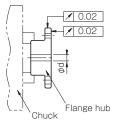
Set screw position

Model	Distance from edge [mm]
SFH-150	15
SFH-170	20
SFH-190	25
SFH-210	30
SFH-220	35
SFH-260	40

Centering and Finishing when Drilling Bores in Flange Hubs

SFH models are delivered in component form. When processing bore diameters in pilot-bore products in particular, adjust the chuck so that runout of each flange hub is no more than the precision of the figure at right, and then finish the inner diameter.

NOTE


• Positions of set screws and keyways are not on the same plane.

• Set screws are included with the product.

• Positioning precision for keyway milling is determined by sight.

• Contact Miki Pulley when the keyway requires a positioning precision for a particular flange hub.

• Consult the technical documentation at the end of this volume for standard dimensions for bore drilling other than those given here.

Items Checked for Design Purposes

Special Items to Take Note of

You should note the following to prevent any problems.

(1) Always be careful of parallel, angular, and axial misalignment.

(2) Always tighten bolts with the specified torque.

Precautions for Handling

SFH models are delivered in component form. This mounts a flange hub on each shaft and couples both shafts by mounting the element (spacer) last, while centering. Also, the SFH(S) types can first mount an element on the flange hub, then center, and then complete the coupling before inserting it onto the shaft.

When using the assembly method that completes coupling first, take extra precautions when handling couplings. Subjecting assembled couplings to strong shocks may affect mounting accuracy and cause the parts to break during use.

- (1) Couplings are designed for use within an operating temperature range of -30° C to 120° C. Although the couplings are designed to be waterproof and oilproof, do not subject them to excessive amounts of water and oil as it may cause part deterioration.
- (2) Handle the element with care as it is made of a thin stainless steel metal disc, also making sure to be careful so as not to injure yourself.
- (3) For frictional coupling types, do not tighten up pressure bolts until after inserting the mounting shaft.
- (4) Mounting shaft to frictional coupling types is assumed to be a round shaft.

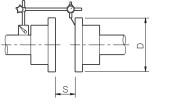
Centering

Parallel misalignment (ε)

Lock the dial gauge in place on one shaft and then measure the runout of the paired flange hub's outer periphery while rotating that shaft. Since couplings on which the elements (discs) are a set SFH(S) types do not allow parallel misalignment, get as close to zero as possible. For couplings that allow the entire length to be freely set SFH(G) types, use the following formula to calculate allowable parallel misalignment.

$\varepsilon = \tan \theta \times LG$

 ε : Allowable parallel misalignment $\theta:1^{\circ}$


LG = LS + S

LS: Total length of spacer S: Dimension of gap between flange hub and spacer

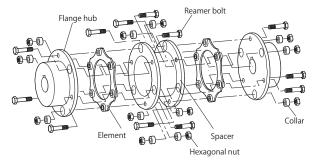
Angular deflection(θ)

Lock the dial gauge in place on one shaft and then measure the runout of the end surface near the paired flange hub's outer periphery while rotating that shaft.

Adjust runout B so that $\theta \leq 1^{\circ}$ in the following formula.

$B = D \times \tan \theta$

B. Runout D: Flange hub outer diameter $\theta:1^{\circ}$

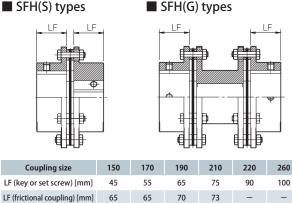

Axial displacement (S)

In addition, restrict the dimension between flange hub faces (S in the diagram) within the allowable error range for axial displacement with respect to a reference value. Note that the tolerance values were calculated based on the assumption that both the level of parallel misalignment and angular deflection are zero. Adjust to keep this value as low as possible.

* On the SFH(S), this is the dimension of the gap between two flange hubs. On the SFH (G), dimension S is the gap between the flange hub and the space

Mounting

This assembly method mounts a flange hub on each shaft of the SFH models and couples both shafts by mounting the element (spacer) last, while centering.



(1) Remove any rust, dust, oil or the like from the inner diameter surfaces of the shaft and flange hubs. In particular, never allow oil or grease containing antifriction or other agent (molybdenum-, silicon-, or fluorine-based), which would dramatically affect the friction coefficient, to contact the surface.

For types that use frictional coupling, loosen the flange hub's pressure bolt and check that the sleeve can move freely.

(2) Insert the flange hub onto the paired mounting shaft. Insert each shaft far enough into the coupling so that the paired mounting shaft touches the shaft along the entire length of the flange hub (LF dimension) as shown in the diagram below, and does not interfere with the elements, spacers or the other shaft.

SFH(S) types

- (3) Mount the other flange hub on the paired mounting shaft as described in steps (1) and (2).
- (4) With the flange hub inserted, center (parallel misalignment and angular deflection), and the adjust the distance between shafts.

(5) For SFH(S) types, translate the flange hubs on the shaft, insert the element between the two flange hubs, and provisionally assemble with the reamer bolt, collar, and hexagonal nut. For SFH(G) types, insert reamer bolts from the flange side for both flanges, provisionally fasten the element and collar with a hexagonal nut, and then translate the flange hubs on the shaft, insert the spacer between the flange hubs, and provisionally assemble with the reamer bolt, collar and hexagonal nut.

COUPLINGS

ETP BUSHINGS

ELECTROMAGNETIC
CLUTCHES & BRAKES
SPEED CHANGERS
& REDUCERS
INVERTERS
LINEAR SHAFT DRIVES
TORQUE LIMITERS
ROSTA

SERIES

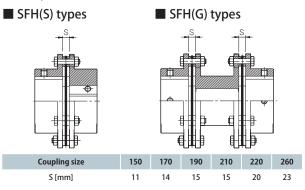
	Metal Disc Couplings						
	SERVOFLEX						
	High-rigidity						
	Couplings SERVORIGID						
	Metal Slit						
Met	Couplings						
al Co	HELI-CAL						
upli	Metal Coil Spring						
ngs	Couplings BAUMANNFLEX						
	Pin Bushing						
	Couplings						
	PARAFLEX						
	Link Couplings						
	SCHMIDT						
	Dual Rubber						
	Couplings						
	STEPFLEX						
ddu	Jaw Couplings MIKI PULLEY						
er a	STARFLEX						
nd P	Jaw Couplings						
lasti	SPRFLEX						
Ĉ	Plastic Bellows						
чр li	Couplings						
ngs	BELLOWFLEX						
	Rubber and Plastic						
	Couplings CENTAFLEX						
MC	DELS						
SF	SFC						

SFS

SFF

SFM

SFH

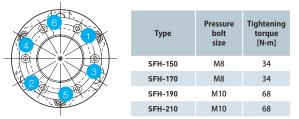

100

SFH Models

Items Checked for Design Purposes

Mounting

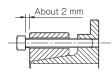
(6) Keep the width of the dimension between flange faces (S dimension in the diagram) within the allowable error range for axial misalignment with respect to the reference value. Note that the tolerance values were calculated based on the assumption that both the level of parallel misalignment and angular deflection are zero. Adjust to keep this value as low as possible.



- (7) Check that the element is not deformed. If it is, it may be under an axial force or there may be insufficient lubrication between the collar, bolt, and disc, so adjust to bring it to normal. The situation may be improved by applying a small amount of machine oil to the bearing surface of the reamer bolt. However, never use any oil or grease containing antifriction or other agent (molybdenum-, silicon-, or fluorine-based) which would dramatically affect the friction coefficient.
- (8) Use a calibrated torque wrench to tighten all the reamer bolts to the appropriate tightening torques.

Coupling size	150	170	190	210	220	260
Reamer bolt size	M8	M10	M12	M16	M16	M20
Tightening torque [N·m]	34	68	118	300	300	570

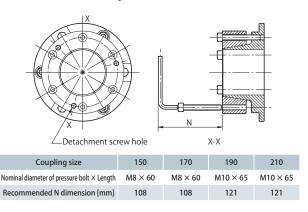
(9) When selecting a key system for the mounting on the shaft, lock the flange hub to the shaft with a set screw.


For frictional coupling types, tighten the pressure bolts evenly, a little at a time, on the diagonal, guided by the tightening procedure of the figure below.

(10)To protect against initial loosening of the pressure bolts, we recommend operating for a set period of time and then retightening to the appropriate tightening torque.

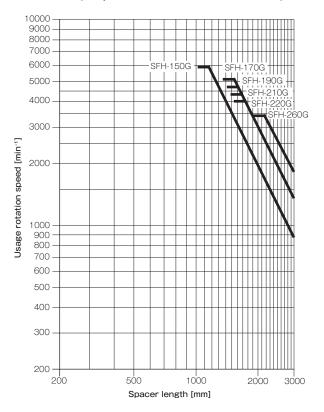
Removal

- (1) Check to confirm that there is no torque or axial load being applied to the coupling. There may be cases where a torque is applied to the coupling, particularly when the safety brake is being used. Make sure to verify that this is not occurring before removing parts.
- (2) Loosen all the pressure bolts placing pressure on the sleeve until the gap between bearing seat and sleeve is about 2 mm.


For a tapered coupling system that tightens pressure bolts from the

axial direction, the sleeve will be self-locking, so the coupling between flange hub and shaft cannot be released simply by loosening the pressure bolt. (Note that in some cases, a coupling can be released by loosening a pressure bolt.) For that reason, when designing devices, a space must be installed for inserting a detachment screw.

If there is no space in the axial direction, consult Miki Pulley.


088 MIKIPULLEY

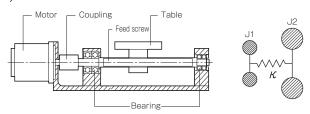
(3) Pull out three of the pressure bolts loosened in step (2), insert them into detachment screw holes at three locations on the sleeve, and tighten them alternately, a little at a time. The link between the flange hub and shaft will be released.

Limit Rotation Speed

For SFH(G) long spacer types, the speeds at which the coupling can be used will vary with the length of spacer selected. Use the following table to confirm that the speed you will use is at or below the limit rotation speed.

COUPLINGS

Points to Consider Regarding the Feed Screw System


Gain adjustment in feed screw systems using a servo motor may cause the servo motor to oscillate. If oscillation occurs, adjustment will need to be made such as by using the filter function or other electrical control system to resolve this issue.

To handle issues such as oscillation, it will be necessary to take into account the torsional natural frequency for the system overall during the design stage, including the torsional stiffness for the coupling and feed screw section and the moment of inertia and other characteristics. Please contact Miki Pulley with any questions regarding servo motor oscillation.

How to Find the Natural Frequency of a Feed Screw System

Select a coupling based on the standard torque or maximum torque of the servo motor.

Next, find the overall natural frequency, Nf, from the torsional stiffness of the coupling and feed screw, κ , the moment of inertia of driving side, J1, and the moment of inertia of driven side, J2, for the feed screw system shown below.

Natural frequency of overall feed screw system Nf [Hz]

 $Nf = \frac{1}{2\pi} \sqrt{\kappa \left(\frac{1}{J1} + \frac{1}{J2}\right)}$

 κ : Torsional stiffness of the coupling and feed screw [N·m/rad] J1: Moment of inertia of driving side [kq·m²]

J2: Moment of inertia of driving side $[kg \cdot m^2]$

Torsional spring constant of coupling and feed screw κ [N·m/rad]

$$\frac{1}{\mathcal{K}} = \frac{1}{\mathcal{K}c} + \frac{1}{\mathcal{K}b}$$

 $J1=Jm+\frac{Jc}{2}$

Jc: Moment of inertia of coupling [kg·m²]

 κ c: Torsional spring constant of coupling [N·m/rad]

Jm: Moment of inertia of servomotor [kg·m²]

Jb: Moment of inertia of feedscrew [kg·m²]

Jt: Moment of inertia of table [kg·m²] Jc: Moment of inertia of coupling [kg·m²]


Driven moment of inertia J2 $[kg\!\cdot\!m^2]$

Moment of inertia of table Jt [kg·m²]

1	_	
Jt	-	$4\pi^2$

M: Mass of table [kg] P: Lead of feed screw [m]

Since it is easier for oscillation to occur when the gain margin with natural frequency is 10 dB or lower, it is necessary for the natural frequency to be set high with a therefore higher gain margin at the design stage, or to adjust the natural frequency using the servomotor's electric tuning function (filter function) so as to avoid oscillation.

Selection Procedures

(1) Find the torque, Ta, applied to the coupling using the output capacity, P, of the driver and the usage rotation speed, n.

Ta [N·m] = 9550 ×
$$\frac{P [kW]}{n[min^{-1}]}$$

- n[min⁻¹]
- (2) Determine the factor κ from the load properties, and find the corrected torque, Td, applied to the coupling.

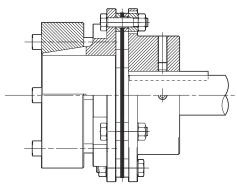
$Td = Ta \times K$ (Refer to the table below for values)

	Constant	Vibrations: Small	Vibrations: Medium	Vibrations: Large
Load properties	\int	\bigwedge	jun	Mr
К	1.0	1.25	1.75	2.25

For servo motor drive, multiply the maximum torque, Ts, by the usage factor $K=1.2 \mbox{ to } 1.5.$

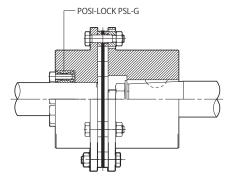
$Td = Ts \times (1.2 \text{ to } 1.5)$

(3) Set the size so that the rated coupling torque, Tn, is higher than the corrected torque, Td.


Tn ≧ Td

- (4) The rated torque of the coupling may be limited by the bore diameter of the coupling. See the table showing the bore diameters that limit rated torque.
- (5) Check that the mount shaft is no larger than the maximum bore diameter of the coupling.

Contact Miki Pulley for assistance with any device experiencing extreme periodic vibrations.


Mounting Example SFH(S)

This example combines a frictional-coupling type flange and a standard bore-drilled flange hub.

SFH(S) special

This combines a flange hub processed for the tapered shaft of a servo motor with a flange hub processed for a Miki Pulley shaft lock PSL-G.

ETP BUSHINGS ELECTROMAGNETIC CLUTCHES & BRAKES SPEED CHANGERS & REDUCERS INVERTERS

LINEAR SHAFT DRIVES

TORQUE LIMITER:

ROST

SERIES

	Metal Disc Couplings SERVOFLEX
Matal Countings	High-rigidity Couplings SERVORIGID
	Metal Slit Couplings HELI-CAL
	Metal Coil Spring Couplings BAUMANNFLEX
	Pin Bushing Couplings PARAFLEX
	Link Couplings SCHMIDT
Rubber and Plactic	Dual Rubber Couplings STEPFLEX
	Jaw Couplings MIKI PULLEY STARFLEX
	Jaw Couplings SPRFLEX

Plastic Bellows Couplings

BELLOWFLEX Rubber and Plastic

Couplings CENTAFLEX

MOD	 , ,			
SFC				
SFS	 	 	 	
SFF	 	 	 	
SFM	 	 	 	
SFH				

Torque Wrenches

SFC- SA2/DA2 (Clamping Bolt)

Nominal bolt diameter	Tightening torque [N·m]	Torque screwdriver (Preset)	Hexagon bit	Coupling size
M1.6	$0.23 \sim 0.28$	CN30LTDK	CB 1.5mm	002
M2	$0.4 \sim 0.5$	CN60LTDK	SB 1.5mm	005,010
M2.5	1.0 ~ 1.1	CN120LTDK	SB 2mm	010,020,025
M3	$1.5 \sim 1.9$	CN200LTDK	SB 2.5mm	030
M4	3.4 ~ 4.1	CN500LTDK	SB 3mm	035,040
M5	$7.0 \sim 8.5$	N10LTDK	SB 4mm	050
Nominal bolt diameter	Tightening torque [N·m]	Torque wrenches (Preset)	Hexagonal head	Coupling size
M6	$14 \sim 15$	N25LCK	25HCK 5mm	055,060
M8	$27 \sim 30$	N50LCK	50HCK 6mm	080,090,100

SFS- S/W/G (Pressure Bolt)

Nominal bolt diameter	Tightening torque [N·m]	Torque wrench (Single-function)	Wrench attachment	Coupling size
M5	8	N12SPCK × 8N • m	230SCK 8mm	05
M6	14	N25SPCK × 14N • m	230SCK 10mm	06,08,09,10
M8	34	N50SPCK × 34N • m	450SCK 13mm	12,14

SFS- S/W/G (Reamer Bolt)

Nominal bolt diameter	Tightening torque [N·m]	Torque wrench (Single-function)	Wrench attachment	Coupling size
M5	8	N12SPCK × 8N • m	25SCK 8mm	05
M6	14	N25SPCK × 14N • m	25SCK 10mm	06,08
M8	34	N50SPCK × 34N • m	50SCK 13mm	09,10
M10	68	N100SPCK × 68N • m	100SCK 17mm	12
M12	118	N200SPCK × 118N • m	200SCK 19mm	14

SFS- S/W/G-C (Reamer Bolt)

Nominal bolt diameter	Tightening torque [N·m]	Torque wrench (Single-function)	Wrench attachment	Coupling size
M5	6	N6SPCK \times 6N \cdot m	25SCK 8mm	05
M6	11	N12SPCK × 11N • m	255CK 10mm	06,08
M8	26	N50SPCK × 26N • m	50SCK 13mm	09,10
M10	51	N100SPCK × 51N • m	100SCK 17mm	12
M12	90	N100SPCK × 90N • m	100SCK 19mm	14

SFF- SS/DS (Clamping Bolt)

Nominal bolt diameter	Tightening torque [N·m]	Torque screwdriver (Preset)	Hexagon bit	Coupling size
M4	3.4	CN500LTDK	SB 3mm	040
M5	7	N10LTDK	SB 4mm	050,060
Nominal bolt diameter	Tightening torque [N·m]	Torque wrenches (Preset)	Hexagonal head	Coupling size
M6	14	N25LCK	25HCK 5mm	060,070,080
M8	34	N50LCK	50HCK 6mm	080,090
Nominal bolt diameter	Tightening torque [N·m]	Torque wrench (Single-function)	Hexagonal head	Coupling size
M10	68	N100SPCK × 68N • m	100HCK 8mm	100,120

SFF- SS/DS (Pressure Bolt)

Nominal bolt diameter	Tightening torque [N·m]	Torque wrench (Single-function)	Wrench attachment	Coupling size
M6	10	N12SPCK × 10N • m	25SCK 10mm	070,080,090,100,120
M8	24	N50SPCK × 24N • m	50SCK 13mm	140

ELECTROMAGNETIC

COUPLINGS

SERIES

SFM- SS (Clamping Bolt)

Nominal bolt diameter	Tightening torque [N·m]	Torque screwdriver (Preset)	Hexagon bit	Coupling size
M5	7	N10LTDK	SB 4mm	060
Nominal bolt diameter	Tightening torque [N·m]	Torque wrench (Preset)	Hexagonal head	Coupling size
M6	14	N25LCK	25HCK 5mm	060,070,080
M8	34	N50LCK	50HCK 6mm	080,090
Nominal bolt diameter	Tightening torque [N·m]	Torque wrench (Single-function)	Hexagonal head	Coupling size
M10	68	N100SPCK × 68N • m	100HCK 8mm	100,120

SFM- SS (Pressure Bolt)

Nominal bolt diameter	Tightening torque [N·m]	Torque wrench (Single-function)	Wrench attachment	Coupling size
M6	10	N12SPCK × 10N • m	25SCK 10mm	070,080,090,100,120
M8	24	N50SPCK × 24N • m	50SCK 13mm	140

SFH- S/G (Pressure Bolt)

Nominal bolt diameter	Tightening torque [N·m]	Torque wrench (Single-function)	Hexagonal head	Coupling size
M8	34	N50SPCK × 34N • m	50HCK 6mm	150,170
M10	68	N100SPCK × 68N • m	100HCK 8mm	190,210

SFH- S/G (Reamer Bolt)

Nominal bolt diameter	Tightening torque [N·m]	Torque wrench (Single-function)	Wrench attachment	Coupling size
M8	34	N50SPCK × 34N • m	50SCK 13mm	150
M10	68	N100SPCK × 68N • m	100SCK 17mm	170
M12	118	N200SPCK × 118N • m	200SCK 19mm	190
M16	300	N4400SPCK × 300N • m	440SCK 24mm	210,220
Nominal bolt diameter	Tightening torque [N·m]	Torque wrenches (Preset)	Wrench attachment	Coupling size
M20	570	N700LCK	700SCK 30mm	260

■ N-LTDK

I Torque Wrenches (Preset) ■ N-LCK

I Torque Wrench (Single-function) ■ N-SPCK

I Wrench Attachment ■ SCK

* Torque screwdriver (wrench)/bit (head) models are those of Nakamura Mfg. Co., Ltd.

	(IES
	Metal Disc Couplings SERVOFLEX
Metal Couplings	High-rigidity Couplings SERVORIGID
	Metal Slit Couplings HELI-CAL
	Metal Coil Spring Couplings BAUMANNFLEX
	Pin Bushing Couplings PARAFLEX
	Link Couplings SCHMIDT
Rubber and Plastic Couplings	Dual Rubber Couplings STEPFLEX
	Jaw Couplings MIKI PULLEY STARFLEX
	Jaw Couplings SPRFLEX
	Plastic Bellows Couplings BELLOWFLEX
	Rubber and Plastic Couplings CENTAFLEX

MODELS	
SFC	
SFS	
SFF	
SFM	
SFH	